--- base_model: openai/clip-vit-base-patch32 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: ktp-kk-crop results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- # ktp-kk-crop This model is a fine-tuned version of [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0312 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.8696 | 5 | 0.5871 | 0.7 | | No log | 1.9130 | 11 | 0.0729 | 0.9667 | | 0.7676 | 2.9565 | 17 | 0.1986 | 0.9 | | 0.7676 | 4.0 | 23 | 0.1610 | 0.9 | | 0.7676 | 4.8696 | 28 | 0.0644 | 0.9667 | | 0.2441 | 5.9130 | 34 | 0.2016 | 0.9 | | 0.2441 | 6.9565 | 40 | 0.1530 | 0.9 | | 0.1751 | 8.0 | 46 | 0.0412 | 1.0 | | 0.1751 | 8.8696 | 51 | 0.0301 | 1.0 | | 0.1751 | 9.9130 | 57 | 0.0495 | 0.9667 | | 0.1156 | 10.9565 | 63 | 0.0283 | 1.0 | | 0.1156 | 12.0 | 69 | 0.0214 | 1.0 | | 0.1156 | 12.8696 | 74 | 0.1014 | 0.9667 | | 0.1238 | 13.9130 | 80 | 0.0538 | 1.0 | | 0.1238 | 14.9565 | 86 | 0.0477 | 1.0 | | 0.1064 | 16.0 | 92 | 0.0105 | 1.0 | | 0.1064 | 16.8696 | 97 | 0.0389 | 0.9667 | | 0.1064 | 17.9130 | 103 | 0.0120 | 1.0 | | 0.0862 | 18.9565 | 109 | 0.0183 | 1.0 | | 0.0862 | 20.0 | 115 | 0.0259 | 1.0 | | 0.0345 | 20.8696 | 120 | 0.0272 | 1.0 | | 0.0345 | 21.7391 | 125 | 0.0312 | 1.0 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1