{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b46728b5870>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b46728b5900>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b46728b5990>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b46728b5a20>", "_build": "<function ActorCriticPolicy._build at 0x7b46728b5ab0>", "forward": "<function ActorCriticPolicy.forward at 0x7b46728b5b40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b46728b5bd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b46728b5c60>", "_predict": "<function ActorCriticPolicy._predict at 0x7b46728b5cf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b46728b5d80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b46728b5e10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b46728b5ea0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b461762a700>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1732747970380530541, "learning_rate": 0.0014350693930671478, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrNTz2UUN074LSovY+1cL6nQou9oCUavQAAAAAAAAAA2mVyvjxSkD9Ng4++IyrlvqrX0L5oCO29AAAAAAAAAAATlDW+BRKVu79LIjtgppI4avvjPIpvILoAAIA/AACAP6bhr70pKHC6TdJXut2SI7kTHow6LHaHOQAAgD8AAIA/M4tgPXsGnboG6ikzZSR8LrOisToee82zAACAPwAAgD/tJiq+Q1VCvAYWejxcCLK73nSnPRLxq7wAAIA/AACAP/p9Lb6poXy8u1yCuuNtqLjU/dc9XXaoOQAAgD8AAIA/swIivRyVTz2CEeC9YhuAvhGKTL2zTby8AAAAAAAAAAAgO1K+Rm41P9QPAzy+rqy+CaoYvtMvLj4AAAAAAAAAACB1Gb42ay68gutYvAMopDzuVYY9biCBPQAAgD8AAIA/xuwWvtycRryv0CQ6MmMYOWiFpT26psi5AACAPwAAgD9dgKu+oTRvP+B2zDyXhvC+jvb5vnKbbD4AAAAAAAAAAAD/oTxKig8/7vk7vSUZzL6z7V08Xsc/vQAAAAAAAAAAuvgvvrgfjbuTru28Lx5xujQxFz2rvlU7AACAPwAAgD9zac89wbRGPpYUk76QD6W+ouv9vdWD8L0AAAAAAAAAAFOgIb7cFw68DuClPK24tDrOLGo9euK5uwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC50y1uzhSMAWyUS/uMAXSUR0DAaP1rIo3KdX2UKGgGR0BvtIljVhCuaAdL1mgIR0DAaaO9+PRzdX2UKGgGR0Bqm+/cnE2paAdNVQNoCEdAwGm7jn3cpXV9lChoBkdAcs7sEaESNGgHS+NoCEdAwGnF2nsLOXV9lChoBkdAcD5MibDuSmgHTRMBaAhHQMBp3BS9/SZ1fZQoaAZHQHFppfMOf/ZoB0vYaAhHQMBp4DVpbll1fZQoaAZHQHD1DI/7iyZoB0vkaAhHQMBqi4HX2/V1fZQoaAZHQHIW73wkPc1oB0v6aAhHQMBqjKC6H0t1fZQoaAZHQGYxNDD0lJJoB03oA2gIR0DAazUWweNldX2UKGgGR0BxSZGpda+waAdL7GgIR0DAa1Nmthd/dX2UKGgGR0Bx9pQFcIJJaAdL12gIR0DAa1lgUlAvdX2UKGgGR0Bw0TnGKhtcaAdL9GgIR0DAbEtNi6QOdX2UKGgGR0BwKlWdVea8aAdNAgFoCEdAwGxaFotcwHV9lChoBkdAcGY7ihnJ1mgHTWUBaAhHQMBsd4Fiay91fZQoaAZHQHNGhXXAdn1oB0vVaAhHQMBsjXEhq0t1fZQoaAZHQGFscYqG1x9oB03oA2gIR0DAbT0otthvdX2UKGgGR0ByASMERraeaAdNAwFoCEdAwG1KRQJokHV9lChoBkdAcgyRXfZVXGgHTQcBaAhHQMBtaAhB7eF1fZQoaAZHQGy/Js41gploB0v3aAhHQMBtcMv7FbV1fZQoaAZHQG3qoHTqjahoB0v9aAhHQMBte0ygwoN1fZQoaAZHQHKWlkDp1RtoB0vZaAhHQMBtgnxSYPZ1fZQoaAZHQG30EHUtqYZoB0v7aAhHQMBuDM41gpl1fZQoaAZHQHGQDz/ZM+NoB0vXaAhHQMBuMaLOzIF1fZQoaAZHQG/u85bQkX1oB0viaAhHQMBuOXIuGsV1fZQoaAZHQHIxIBRyfcxoB0vOaAhHQMBu1wWWQfZ1fZQoaAZHQHL8jl90A95oB0vhaAhHQMBu51SflIV1fZQoaAZHQG6KT1K5CnhoB0vmaAhHQMBve3K8tf51fZQoaAZHQHElKQiiZfFoB0vdaAhHQMBvkt6gM+h1fZQoaAZHQEUC11nuiN9oB0u5aAhHQMBvmlnZkCp1fZQoaAZHQHLKfW1+iJxoB00sAWgIR0DAcDC0OVgQdX2UKGgGR0BzEld1MdtEaAdLzmgIR0DAcEhj6N2ldX2UKGgGR0BtF3rrxAjZaAdNCQFoCEdAwHBXuw5eaHV9lChoBkdAbOQnYxtYS2gHS+toCEdAwHEAi0OVgXV9lChoBkfAQ8ytNi6QNmgHS55oCEdAwHGlfOUt7XV9lChoBkdAcW2rIo3JgmgHS9poCEdAwHH6R0U473V9lChoBkdAcqtLNwBHTmgHTUYBaAhHQMBye6jWTX91fZQoaAZHQHAUugUUO/doB03QAWgIR0DAcrRSxZ+ydX2UKGgGR0Bv36zcAR02aAdNZwJoCEdAwHLt8zAN5XV9lChoBkdAcA2zNUwSJ2gHS81oCEdAwHL8GZeAu3V9lChoBkdAOuvXXiBGx2gHS5NoCEdAwHMA0m+j/XV9lChoBkdAcJS7fpD/l2gHS/doCEdAwHPFA2Q4j3V9lChoBkdAayr+WGATZmgHTYYBaAhHQMB0F4XXRPZ1fZQoaAZHQFdOwxFiKBNoB03oA2gIR0DAdDF5UtI1dX2UKGgGR0Bpsaaw2VFAaAdNkgNoCEdAwHSrXlKbrnV9lChoBkdAb2rjENvwVmgHS+hoCEdAwHXetg8bJnV9lChoBkdAcbXH1e0G/2gHTQ0BaAhHQMB2QeiaiK11fZQoaAZHQHDQKBEroW5oB00DAWgIR0DAdkiADq4ZdX2UKGgGR0BwOrKji4rjaAdL6GgIR0DAdmXyLAHndX2UKGgGR0BumyThYNiIaAdL6GgIR0DAdnUnb7CSdX2UKGgGR0BwHTUutfXxaAdL9GgIR0DAdofoouwpdX2UKGgGR0BwecTDfm9yaAdL7mgIR0DAd1XqiXY2dX2UKGgGR0BwJhEE1VHXaAdL32gIR0DAd3UaVD8cdX2UKGgGR0BxonFtKqXGaAdL8mgIR0DAd3iJ9AoodX2UKGgGR0Bu4rDl5nlGaAdNJAFoCEdAwHd9EVFhHHV9lChoBkdAbIdE61b7j2gHS+FoCEdAwHksdz4k/3V9lChoBkdAb+UaJAMUh2gHS95oCEdAwHk4b83uNXV9lChoBkdAb9oRbKRuCWgHS+BoCEdAwHmGTdtVJnV9lChoBkdAcZ3+YtxuK2gHTRIBaAhHQMB6V2hIvrZ1fZQoaAZHQHB7G6TW5H5oB0vzaAhHQMB6Z446wMZ1fZQoaAZHQHCp5owmE5BoB00OAWgIR0DAeoCXhOxjdX2UKGgGR0Bw5+6nR9gGaAdL1GgIR0DAe0SoCMgmdX2UKGgGR0BYlQLApKBeaAdN6ANoCEdAwHtOUJOWSnV9lChoBkfAMsEQsf7rLWgHS2poCEdAwHtZdadMCnV9lChoBkdAXzD7BO58SmgHTegDaAhHQMB7ciYkVvd1fZQoaAZHQHEXHim2sq9oB02CA2gIR0DAe6vKji4sdX2UKGgGR0Bwl3hwVCXyaAdNNwFoCEdAwHxNLPldT3V9lChoBkdAR1qsjmjj72gHS8poCEdAwHx2ejmCAnV9lChoBkdAcpEfeDWbw2gHS+RoCEdAwH13W1+iJ3V9lChoBkdAcZqnIyTINmgHS9xoCEdAwH2FZxJd0XV9lChoBkdAbpTxBmf5DmgHTZsBaAhHQMB+FU8FINF1fZQoaAZHQGAK55iVjZtoB03oA2gIR0DAfjvYQJ5WdX2UKGgGR0Bsu6PGQ0XQaAdL4GgIR0DAfnPaDf3wdX2UKGgGR0BxCNcW0qpcaAdL72gIR0DAfoL3M6ikdX2UKGgGR0Byc8neBQN1aAdL72gIR0DAfo+Yx+KCdX2UKGgGR0BxmsABDG96aAdNNgFoCEdAwH9l8uzyBnV9lChoBkdAYeSlvZRKpWgHTegDaAhHQMB/eyFwkxB1fZQoaAZHQG3iK6FuejFoB00EAWgIR0DAf4OA3DNydX2UKGgGR0BuxOAf+0gKaAdNFgFoCEdAwICIQGOdXnV9lChoBkdAbHUiWVu76GgHTRYBaAhHQMCAyb8Nx2l1fZQoaAZHQGyD7CzkZJloB00BAWgIR0DAgMwgNgBtdX2UKGgGR0Bi1EFOfukUaAdN6ANoCEdAwIDZBacI7nV9lChoBkdAcNM/gBLf12gHS9JoCEdAwIGjO1OTJXV9lChoBkdAcWiJDVpblmgHS+JoCEdAwIHfs6aLGnV9lChoBkdAcqLbqyGBWmgHS99oCEdAwIHt7AtWdXV9lChoBkdAcMq0Z3s5XGgHS+FoCEdAwIJ+mShaknV9lChoBkdAb7+3m3fAK2gHS+NoCEdAwIKG1pj+aXV9lChoBkdAc1234Kx9omgHS+toCEdAwIK5T9bX6XV9lChoBkdAcUsu1F6RhmgHS+JoCEdAwIK4tYB/7XV9lChoBkdAcNFdpZfUnWgHS+RoCEdAwILCbR4QjHV9lChoBkdAcGpv60pmVmgHS/JoCEdAwIOJOfNA1XV9lChoBkdAcjntWMju8mgHS/RoCEdAwIQgieumrXV9lChoBkdAcfj8BdUsF2gHS99oCEdAwIQ0/Z/Tb3V9lChoBkdAcch3I+4b0mgHS/toCEdAwIQ4hFmWdHV9lChoBkdAb4ugL7XQMWgHS/JoCEdAwIT494eLenV9lChoBkdAcLbmTC+De2gHS9RoCEdAwIUOXQdCFHV9lChoBkdAcrotXPqs2mgHS+5oCEdAwIWuK/mDDnV9lChoBkdAcKIot+TePGgHS9NoCEdAwIXDkbPyCnV9lChoBkdAb748/2TPjWgHS/5oCEdAwIYOiqyWzHV9lChoBkdATd3fdhy8z2gHS5BoCEdAwIYUv3ai9XV9lChoBkdAYn4tGus90WgHTegDaAhHQMCGpLPldTp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 9770, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 64, "gamma": 0.9970647997739153, "gae_lambda": 0.9985866018289656, "ent_coef": 1.4200071054471824e-05, "vf_coef": 0.5, "max_grad_norm": 0.6527778177585515, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9Xgx4HFfALhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |