--- datasets: - heegyu/wizard_vicuna_70k_v2 license: apache-2.0 --- Hyperparameters - 3/8 epoch(3rd epoch checkpoing while 8epoch training) - 1e-4 -> 1e-5 with cosine lr decay - batch size 128 - max sequence length 2048 - AdamW(weigth decay=0.01, b1=0.9, b2=0.99, grad_clip=1.0) - no warmup - BF16 - Base Model: [openlm-research/open_llama_3b_v2](https://huggingface.co/openlm-research/open_llama_3b_v2) ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("heegyu/WizardVicuna-open-llama-3b-v2") model = AutoModelForCausalLM.from_pretrained("heegyu/WizardVicuna-open-llama-3b-v2") inputs = tokenizer(["Human: Hi, nice to meet you!\n\nAssistant: "], return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=16) print(tokenizer.batch_decode(outputs, skip_special_tokens=False)) ``` output: `['Human: Hi, nice to meet you!\n\nAssistant: Hello. Great to meet you too. Well, how can I assist you today?<|endoftext|>']`