File size: 7,251 Bytes
aa7b244 7a7601d aa7b244 7a7601d aa7b244 ba2e5e5 aa7b244 3bc3a93 aa7b244 a59413a aa7b244 a59413a 03f26d5 c04c14c 03f26d5 c04c14c 03f26d5 afb57fc 6039751 afb57fc 7a7601d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- chat
- abliterated
- uncensored
base_model: Qwen/Qwen2.5-7B-Instruct
license_link: https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-abliterated/blob/main/LICENSE
pipeline_tag: text-generation
model-index:
- name: Qwen2.5-7B-Instruct-abliterated
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 75.46
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/Qwen2.5-7B-Instruct-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 32.89
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/Qwen2.5-7B-Instruct-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 0.0
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/Qwen2.5-7B-Instruct-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 8.72
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/Qwen2.5-7B-Instruct-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 7.48
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/Qwen2.5-7B-Instruct-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 35.33
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/Qwen2.5-7B-Instruct-abliterated
name: Open LLM Leaderboard
---
# huihui-ai/Qwen2.5-7B-Instruct-abliterated
This is an uncensored version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) created with abliteration (see [this article](https://huggingface.co/blog/mlabonne/abliteration) to know more about it).
Special thanks to [@FailSpy](https://huggingface.co/failspy) for the original code and technique. Please follow him if you're interested in abliterated models.
**Important Note** There's a new version available, please try using the new version [Qwen2.5-7B-Instruct-abliterated-v2](https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-abliterated-v2).
## Usage
You can use this model in your applications by loading it with Hugging Face's `transformers` library:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the model and tokenizer
model_name = "huihui-ai/Qwen2.5-7B-Instruct-abliterated"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Initialize conversation context
initial_messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}
]
messages = initial_messages.copy() # Copy the initial conversation context
# Enter conversation loop
while True:
# Get user input
user_input = input("User: ").strip() # Strip leading and trailing spaces
# If the user types '/exit', end the conversation
if user_input.lower() == "/exit":
print("Exiting chat.")
break
# If the user types '/clean', reset the conversation context
if user_input.lower() == "/clean":
messages = initial_messages.copy() # Reset conversation context
print("Chat history cleared. Starting a new conversation.")
continue
# If input is empty, prompt the user and continue
if not user_input:
print("Input cannot be empty. Please enter something.")
continue
# Add user input to the conversation
messages.append({"role": "user", "content": user_input})
# Build the chat template
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Tokenize input and prepare it for the model
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Generate a response from the model
generated_ids = model.generate(
**model_inputs,
max_new_tokens=8192
)
# Extract model output, removing special tokens
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Add the model's response to the conversation
messages.append({"role": "assistant", "content": response})
# Print the model's response
print(f"Qwen: {response}")
```
## Evaluations
The following data has been re-evaluated and calculated as the average for each test.
| Benchmark | Qwen2.5-7B-Instruct | Qwen2.5-7B-Instruct-abliterated |
|-------------|---------------------|---------------------------------|
| IF_Eval | 76.44 | **76.49** |
| MMLU Pro | **43.12** | 41.71 |
| TruthfulQA | 62.46 | **64.92** |
| BBH | **53.92** | 52.77 |
| GPQA | 31.91 | **31.97** |
The script used for evaluation can be found inside this repository under /eval.sh, or click [here](https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-abliterated/blob/main/eval.sh)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_huihui-ai__Qwen2.5-7B-Instruct-abliterated)
| Metric |Value|
|-------------------|----:|
|Avg. |26.65|
|IFEval (0-Shot) |75.46|
|BBH (3-Shot) |32.89|
|MATH Lvl 5 (4-Shot)| 0.00|
|GPQA (0-shot) | 8.72|
|MuSR (0-shot) | 7.48|
|MMLU-PRO (5-shot) |35.33|
|