ibaiGorordo
commited on
Commit
·
7e908f7
1
Parent(s):
aa3e7f3
Upload model.py
Browse files
model.py
ADDED
@@ -0,0 +1,696 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torchvision.models as models
|
5 |
+
from torch.jit import script
|
6 |
+
|
7 |
+
|
8 |
+
class WSConv2d(nn.Conv2d):
|
9 |
+
def __init___(self, in_channels, out_channels, kernel_size, stride=1,
|
10 |
+
padding=0, dilation=1, groups=1, bias=True):
|
11 |
+
super(WSConv2d, self).__init__(in_channels, out_channels, kernel_size, stride,
|
12 |
+
padding, dilation, groups, bias)
|
13 |
+
|
14 |
+
def forward(self, x):
|
15 |
+
weight = self.weight
|
16 |
+
weight_mean = weight.mean(dim=1, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True)
|
17 |
+
weight = weight - weight_mean
|
18 |
+
std = weight.view(weight.size(0), -1).std(dim=1).view(-1, 1, 1, 1) + 1e-5
|
19 |
+
# std = torch.sqrt(torch.var(weight.view(weight.size(0),-1),dim=1)+1e-12).view(-1,1,1,1)+1e-5
|
20 |
+
weight = weight / std.expand_as(weight)
|
21 |
+
return F.conv2d(x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
|
22 |
+
|
23 |
+
|
24 |
+
def conv_ws(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True):
|
25 |
+
return WSConv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation,
|
26 |
+
groups=groups, bias=bias)
|
27 |
+
|
28 |
+
|
29 |
+
'''
|
30 |
+
class Mish(nn.Module):
|
31 |
+
def __init__(self):
|
32 |
+
super(Mish, self).__init__()
|
33 |
+
def forward(self, x):
|
34 |
+
return x*torch.tanh(F.softplus(x))
|
35 |
+
'''
|
36 |
+
|
37 |
+
|
38 |
+
@script
|
39 |
+
def _mish_jit_fwd(x): return x.mul(torch.tanh(F.softplus(x)))
|
40 |
+
|
41 |
+
|
42 |
+
@script
|
43 |
+
def _mish_jit_bwd(x, grad_output):
|
44 |
+
x_sigmoid = torch.sigmoid(x)
|
45 |
+
x_tanh_sp = F.softplus(x).tanh()
|
46 |
+
return grad_output.mul(x_tanh_sp + x * x_sigmoid * (1 - x_tanh_sp * x_tanh_sp))
|
47 |
+
|
48 |
+
|
49 |
+
class MishJitAutoFn(torch.autograd.Function):
|
50 |
+
@staticmethod
|
51 |
+
def forward(ctx, x):
|
52 |
+
ctx.save_for_backward(x)
|
53 |
+
return _mish_jit_fwd(x)
|
54 |
+
|
55 |
+
@staticmethod
|
56 |
+
def backward(ctx, grad_output):
|
57 |
+
x = ctx.saved_variables[0]
|
58 |
+
return _mish_jit_bwd(x, grad_output)
|
59 |
+
|
60 |
+
|
61 |
+
# Cell
|
62 |
+
def mish(x): return MishJitAutoFn.apply(x)
|
63 |
+
|
64 |
+
|
65 |
+
class Mish(nn.Module):
|
66 |
+
def __init__(self, inplace: bool = False):
|
67 |
+
super(Mish, self).__init__()
|
68 |
+
|
69 |
+
def forward(self, x):
|
70 |
+
return MishJitAutoFn.apply(x)
|
71 |
+
|
72 |
+
|
73 |
+
######################################################################################################################
|
74 |
+
######################################################################################################################
|
75 |
+
|
76 |
+
# pre-activation based upsampling conv block
|
77 |
+
class upConvLayer(nn.Module):
|
78 |
+
def __init__(self, in_channels, out_channels, scale_factor, norm, act, num_groups):
|
79 |
+
super(upConvLayer, self).__init__()
|
80 |
+
conv = conv_ws
|
81 |
+
if act == 'ELU':
|
82 |
+
act = nn.ELU()
|
83 |
+
elif act == 'Mish':
|
84 |
+
act = Mish()
|
85 |
+
else:
|
86 |
+
act = nn.ReLU(True)
|
87 |
+
self.conv = conv(in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1,
|
88 |
+
bias=False)
|
89 |
+
if norm == 'GN':
|
90 |
+
self.norm = nn.GroupNorm(num_groups=num_groups, num_channels=in_channels)
|
91 |
+
else:
|
92 |
+
self.norm = nn.BatchNorm2d(in_channels, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)
|
93 |
+
self.act = act
|
94 |
+
self.scale_factor = scale_factor
|
95 |
+
|
96 |
+
def forward(self, x):
|
97 |
+
x = self.norm(x)
|
98 |
+
x = self.act(x) # pre-activation
|
99 |
+
x = F.interpolate(x, scale_factor=self.scale_factor, mode='bilinear')
|
100 |
+
x = self.conv(x)
|
101 |
+
return x
|
102 |
+
|
103 |
+
|
104 |
+
# pre-activation based conv block
|
105 |
+
class myConv(nn.Module):
|
106 |
+
def __init__(self, in_ch, out_ch, kSize, stride=1,
|
107 |
+
padding=0, dilation=1, bias=True, norm='GN', act='ELU', num_groups=32):
|
108 |
+
super(myConv, self).__init__()
|
109 |
+
conv = conv_ws
|
110 |
+
if act == 'ELU':
|
111 |
+
act = nn.ELU()
|
112 |
+
elif act == 'Mish':
|
113 |
+
act = Mish()
|
114 |
+
else:
|
115 |
+
act = nn.ReLU(True)
|
116 |
+
module = []
|
117 |
+
if norm == 'GN':
|
118 |
+
module.append(nn.GroupNorm(num_groups=num_groups, num_channels=in_ch))
|
119 |
+
else:
|
120 |
+
module.append(nn.BatchNorm2d(in_ch, eps=0.001, momentum=0.1, affine=True, track_running_stats=True))
|
121 |
+
module.append(act)
|
122 |
+
module.append(conv(in_ch, out_ch, kernel_size=kSize, stride=stride,
|
123 |
+
padding=padding, dilation=dilation, groups=1, bias=bias))
|
124 |
+
self.module = nn.Sequential(*module)
|
125 |
+
|
126 |
+
def forward(self, x):
|
127 |
+
out = self.module(x)
|
128 |
+
return out
|
129 |
+
|
130 |
+
|
131 |
+
# Deep Feature Fxtractor
|
132 |
+
class deepFeatureExtractor_ResNext101(nn.Module):
|
133 |
+
def __init__(self, args, lv6=False):
|
134 |
+
super(deepFeatureExtractor_ResNext101, self).__init__()
|
135 |
+
self.args = args
|
136 |
+
# after passing ReLU : H/2 x W/2
|
137 |
+
# after passing Layer1 : H/4 x W/4
|
138 |
+
# after passing Layer2 : H/8 x W/8
|
139 |
+
# after passing Layer3 : H/16 x W/16
|
140 |
+
self.encoder = models.resnext101_32x8d(weights=models.ResNeXt101_32X8D_Weights.DEFAULT)
|
141 |
+
self.fixList = ['layer1.0', 'layer1.1', '.bn']
|
142 |
+
self.lv6 = lv6
|
143 |
+
|
144 |
+
if lv6 is True:
|
145 |
+
self.layerList = ['relu', 'layer1', 'layer2', 'layer3', 'layer4']
|
146 |
+
self.dimList = [64, 256, 512, 1024, 2048]
|
147 |
+
else:
|
148 |
+
del self.encoder.layer4
|
149 |
+
del self.encoder.fc
|
150 |
+
self.layerList = ['relu', 'layer1', 'layer2', 'layer3']
|
151 |
+
self.dimList = [64, 256, 512, 1024]
|
152 |
+
|
153 |
+
for name, parameters in self.encoder.named_parameters():
|
154 |
+
if name == 'conv1.weight':
|
155 |
+
parameters.requires_grad = False
|
156 |
+
if any(x in name for x in self.fixList):
|
157 |
+
parameters.requires_grad = False
|
158 |
+
|
159 |
+
def forward(self, x):
|
160 |
+
out_featList = []
|
161 |
+
feature = x
|
162 |
+
for k, v in self.encoder._modules.items():
|
163 |
+
if k == 'avgpool':
|
164 |
+
break
|
165 |
+
feature = v(feature)
|
166 |
+
# feature = v(features[-1])
|
167 |
+
# features.append(feature)
|
168 |
+
if any(x in k for x in self.layerList):
|
169 |
+
out_featList.append(feature)
|
170 |
+
return out_featList
|
171 |
+
|
172 |
+
def freeze_bn(self, enable=False):
|
173 |
+
""" Adapted from https://discuss.pytorch.org/t/how-to-train-with-frozen-batchnorm/12106/8 """
|
174 |
+
for module in self.modules():
|
175 |
+
if isinstance(module, nn.BatchNorm2d):
|
176 |
+
module.train() if enable else module.eval()
|
177 |
+
|
178 |
+
module.weight.requires_grad = enable
|
179 |
+
module.bias.requires_grad = enable
|
180 |
+
|
181 |
+
|
182 |
+
# ASPP Module
|
183 |
+
class Dilated_bottleNeck(nn.Module):
|
184 |
+
def __init__(self, norm, act, in_feat):
|
185 |
+
super(Dilated_bottleNeck, self).__init__()
|
186 |
+
conv = conv_ws
|
187 |
+
# in feat = 1024 in ResNext101 and ResNet101
|
188 |
+
self.reduction1 = conv(in_feat, in_feat // 2, kernel_size=1, stride=1, bias=False, padding=0)
|
189 |
+
self.aspp_d3 = nn.Sequential(
|
190 |
+
myConv(in_feat // 2, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False, norm=norm, act=act,
|
191 |
+
num_groups=(in_feat // 2) // 16),
|
192 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=3, dilation=3, bias=False, norm=norm, act=act,
|
193 |
+
num_groups=(in_feat // 4) // 16))
|
194 |
+
self.aspp_d6 = nn.Sequential(
|
195 |
+
myConv(in_feat // 2 + in_feat // 4, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False,
|
196 |
+
norm=norm, act=act, num_groups=(in_feat // 2 + in_feat // 4) // 16),
|
197 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=6, dilation=6, bias=False, norm=norm, act=act,
|
198 |
+
num_groups=(in_feat // 4) // 16))
|
199 |
+
self.aspp_d12 = nn.Sequential(
|
200 |
+
myConv(in_feat, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False, norm=norm, act=act,
|
201 |
+
num_groups=(in_feat) // 16),
|
202 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=12, dilation=12, bias=False, norm=norm,
|
203 |
+
act=act, num_groups=(in_feat // 4) // 16))
|
204 |
+
self.aspp_d18 = nn.Sequential(
|
205 |
+
myConv(in_feat + in_feat // 4, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False,
|
206 |
+
norm=norm, act=act, num_groups=(in_feat + in_feat // 4) // 16),
|
207 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=18, dilation=18, bias=False, norm=norm,
|
208 |
+
act=act, num_groups=(in_feat // 4) // 16))
|
209 |
+
self.reduction2 = myConv(((in_feat // 4) * 4) + (in_feat // 2), in_feat // 2, kSize=3, stride=1, padding=1,
|
210 |
+
bias=False, norm=norm, act=act, num_groups=((in_feat // 4) * 4 + (in_feat // 2)) // 16)
|
211 |
+
|
212 |
+
def forward(self, x):
|
213 |
+
x = self.reduction1(x)
|
214 |
+
d3 = self.aspp_d3(x)
|
215 |
+
cat1 = torch.cat([x, d3], dim=1)
|
216 |
+
d6 = self.aspp_d6(cat1)
|
217 |
+
cat2 = torch.cat([cat1, d6], dim=1)
|
218 |
+
d12 = self.aspp_d12(cat2)
|
219 |
+
cat3 = torch.cat([cat2, d12], dim=1)
|
220 |
+
d18 = self.aspp_d18(cat3)
|
221 |
+
out = self.reduction2(torch.cat([x, d3, d6, d12, d18], dim=1))
|
222 |
+
return out # 512 x H/16 x W/16
|
223 |
+
|
224 |
+
|
225 |
+
class Dilated_bottleNeck2(nn.Module):
|
226 |
+
def __init__(self, norm, act, in_feat):
|
227 |
+
super(Dilated_bottleNeck2, self).__init__()
|
228 |
+
conv = conv_ws
|
229 |
+
# in feat = 1024 in ResNext101 and ResNet101
|
230 |
+
# self.reduction1 = conv(in_feat, in_feat//2, kernel_size=1, stride = 1, bias=False, padding=0)
|
231 |
+
self.reduction1 = conv(in_feat, in_feat // 2, kernel_size=3, stride=1, padding=1, bias=False)
|
232 |
+
self.aspp_d3 = nn.Sequential(
|
233 |
+
myConv(in_feat // 2, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False, norm=norm, act=act,
|
234 |
+
num_groups=(in_feat // 2) // 16),
|
235 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=3, dilation=3, bias=False, norm=norm, act=act,
|
236 |
+
num_groups=(in_feat // 4) // 16))
|
237 |
+
self.aspp_d6 = nn.Sequential(
|
238 |
+
myConv(in_feat // 2 + in_feat // 4, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False,
|
239 |
+
norm=norm, act=act, num_groups=(in_feat // 2 + in_feat // 4) // 16),
|
240 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=6, dilation=6, bias=False, norm=norm, act=act,
|
241 |
+
num_groups=(in_feat // 4) // 16))
|
242 |
+
self.aspp_d12 = nn.Sequential(
|
243 |
+
myConv(in_feat, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False, norm=norm, act=act,
|
244 |
+
num_groups=(in_feat) // 16),
|
245 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=12, dilation=12, bias=False, norm=norm,
|
246 |
+
act=act, num_groups=(in_feat // 4) // 16))
|
247 |
+
self.aspp_d18 = nn.Sequential(
|
248 |
+
myConv(in_feat + in_feat // 4, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False,
|
249 |
+
norm=norm, act=act, num_groups=(in_feat + in_feat // 4) // 16),
|
250 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=18, dilation=18, bias=False, norm=norm,
|
251 |
+
act=act, num_groups=(in_feat // 4) // 16))
|
252 |
+
self.aspp_d24 = nn.Sequential(
|
253 |
+
myConv(in_feat + in_feat // 2, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False,
|
254 |
+
norm=norm, act=act, num_groups=(in_feat + in_feat // 2) // 16),
|
255 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=24, dilation=24, bias=False, norm=norm,
|
256 |
+
act=act, num_groups=(in_feat // 4) // 16))
|
257 |
+
self.reduction2 = myConv(((in_feat // 4) * 5) + (in_feat // 2), in_feat // 2, kSize=3, stride=1, padding=1,
|
258 |
+
bias=False, norm=norm, act=act, num_groups=((in_feat // 4) * 5 + (in_feat // 2)) // 16)
|
259 |
+
|
260 |
+
def forward(self, x):
|
261 |
+
x = self.reduction1(x)
|
262 |
+
d3 = self.aspp_d3(x)
|
263 |
+
cat1 = torch.cat([x, d3], dim=1)
|
264 |
+
d6 = self.aspp_d6(cat1)
|
265 |
+
cat2 = torch.cat([cat1, d6], dim=1)
|
266 |
+
d12 = self.aspp_d12(cat2)
|
267 |
+
cat3 = torch.cat([cat2, d12], dim=1)
|
268 |
+
d18 = self.aspp_d18(cat3)
|
269 |
+
cat4 = torch.cat([cat3, d18], dim=1)
|
270 |
+
d24 = self.aspp_d24(cat4)
|
271 |
+
out = self.reduction2(torch.cat([x, d3, d6, d12, d18, d24], dim=1))
|
272 |
+
return out # 512 x H/16 x W/16
|
273 |
+
|
274 |
+
|
275 |
+
class Dilated_bottleNeck_lv6(nn.Module):
|
276 |
+
def __init__(self, norm, act, in_feat):
|
277 |
+
super(Dilated_bottleNeck_lv6, self).__init__()
|
278 |
+
conv = conv_ws
|
279 |
+
in_feat = in_feat // 2
|
280 |
+
self.reduction1 = myConv(in_feat * 2, in_feat // 2, kSize=3, stride=1, padding=1, bias=False, norm=norm,
|
281 |
+
act=act, num_groups=(in_feat) // 16)
|
282 |
+
self.aspp_d3 = nn.Sequential(
|
283 |
+
myConv(in_feat // 2, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False, norm=norm, act=act,
|
284 |
+
num_groups=(in_feat // 2) // 16),
|
285 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=3, dilation=3, bias=False, norm=norm, act=act,
|
286 |
+
num_groups=(in_feat // 4) // 16))
|
287 |
+
self.aspp_d6 = nn.Sequential(
|
288 |
+
myConv(in_feat // 2 + in_feat // 4, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False,
|
289 |
+
norm=norm, act=act, num_groups=(in_feat // 2 + in_feat // 4) // 16),
|
290 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=6, dilation=6, bias=False, norm=norm, act=act,
|
291 |
+
num_groups=(in_feat // 4) // 16))
|
292 |
+
self.aspp_d12 = nn.Sequential(
|
293 |
+
myConv(in_feat, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False, norm=norm, act=act,
|
294 |
+
num_groups=(in_feat) // 16),
|
295 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=12, dilation=12, bias=False, norm=norm,
|
296 |
+
act=act, num_groups=(in_feat // 4) // 16))
|
297 |
+
self.aspp_d18 = nn.Sequential(
|
298 |
+
myConv(in_feat + in_feat // 4, in_feat // 4, kSize=1, stride=1, padding=0, dilation=1, bias=False,
|
299 |
+
norm=norm, act=act, num_groups=(in_feat + in_feat // 4) // 16),
|
300 |
+
myConv(in_feat // 4, in_feat // 4, kSize=3, stride=1, padding=18, dilation=18, bias=False, norm=norm,
|
301 |
+
act=act, num_groups=(in_feat // 4) // 16))
|
302 |
+
self.reduction2 = myConv(((in_feat // 4) * 4) + (in_feat // 2), in_feat, kSize=3, stride=1, padding=1,
|
303 |
+
bias=False, norm=norm, act=act, num_groups=((in_feat // 4) * 4 + (in_feat // 2)) // 16)
|
304 |
+
|
305 |
+
def forward(self, x):
|
306 |
+
x = self.reduction1(x)
|
307 |
+
d3 = self.aspp_d3(x)
|
308 |
+
cat1 = torch.cat([x, d3], dim=1)
|
309 |
+
d6 = self.aspp_d6(cat1)
|
310 |
+
cat2 = torch.cat([cat1, d6], dim=1)
|
311 |
+
d12 = self.aspp_d12(cat2)
|
312 |
+
cat3 = torch.cat([cat2, d12], dim=1)
|
313 |
+
d18 = self.aspp_d18(cat3)
|
314 |
+
out = self.reduction2(torch.cat([x, d3, d6, d12, d18], dim=1))
|
315 |
+
return out # 512 x H/16 x W/16
|
316 |
+
|
317 |
+
|
318 |
+
# Laplacian Decoder Network
|
319 |
+
class Lap_decoder_lv5(nn.Module):
|
320 |
+
def __init__(self, args, dimList):
|
321 |
+
super(Lap_decoder_lv5, self).__init__()
|
322 |
+
norm = args.norm
|
323 |
+
conv = conv_ws
|
324 |
+
if norm == 'GN':
|
325 |
+
if args.rank == 0:
|
326 |
+
print("==> Norm: GN")
|
327 |
+
else:
|
328 |
+
if args.rank == 0:
|
329 |
+
print("==> Norm: BN")
|
330 |
+
|
331 |
+
if args.act == 'ELU':
|
332 |
+
act = 'ELU'
|
333 |
+
elif args.act == 'Mish':
|
334 |
+
act = 'Mish'
|
335 |
+
else:
|
336 |
+
act = 'ReLU'
|
337 |
+
kSize = 3
|
338 |
+
self.max_depth = args.max_depth
|
339 |
+
self.ASPP = Dilated_bottleNeck(norm, act, dimList[3])
|
340 |
+
self.dimList = dimList
|
341 |
+
############################################ Pyramid Level 5 ###################################################
|
342 |
+
# decoder1 out : 1 x H/16 x W/16 (Level 5)
|
343 |
+
self.decoder1 = nn.Sequential(
|
344 |
+
myConv(dimList[3] // 2, dimList[3] // 4, kSize, stride=1, padding=kSize // 2, bias=False,
|
345 |
+
norm=norm, act=act, num_groups=(dimList[3] // 2) // 16),
|
346 |
+
myConv(dimList[3] // 4, dimList[3] // 8, kSize, stride=1, padding=kSize // 2, bias=False,
|
347 |
+
norm=norm, act=act, num_groups=(dimList[3] // 4) // 16),
|
348 |
+
myConv(dimList[3] // 8, dimList[3] // 16, kSize, stride=1, padding=kSize // 2, bias=False,
|
349 |
+
norm=norm, act=act, num_groups=(dimList[3] // 8) // 16),
|
350 |
+
myConv(dimList[3] // 16, dimList[3] // 32, kSize, stride=1, padding=kSize // 2, bias=False,
|
351 |
+
norm=norm, act=act, num_groups=(dimList[3] // 16) // 16),
|
352 |
+
myConv(dimList[3] // 32, 1, kSize, stride=1, padding=kSize // 2, bias=False,
|
353 |
+
norm=norm, act=act, num_groups=(dimList[3] // 32) // 16)
|
354 |
+
)
|
355 |
+
########################################################################################################################
|
356 |
+
|
357 |
+
############################################ Pyramid Level 4 ###################################################
|
358 |
+
# decoder2 out : 1 x H/8 x W/8 (Level 4)
|
359 |
+
# decoder2_up : (H/16,W/16)->(H/8,W/8)
|
360 |
+
self.decoder2_up1 = upConvLayer(dimList[3] // 2, dimList[3] // 4, 2, norm, act, (dimList[3] // 2) // 16)
|
361 |
+
self.decoder2_reduc1 = myConv(dimList[3] // 4 + dimList[2], dimList[3] // 4 - 4, kSize=1, stride=1, padding=0,
|
362 |
+
bias=False,
|
363 |
+
norm=norm, act=act, num_groups=(dimList[3] // 4 + dimList[2]) // 16)
|
364 |
+
self.decoder2_1 = myConv(dimList[3] // 4, dimList[3] // 4, kSize, stride=1, padding=kSize // 2, bias=False,
|
365 |
+
norm=norm, act=act, num_groups=(dimList[3] // 4) // 16)
|
366 |
+
|
367 |
+
self.decoder2_2 = myConv(dimList[3] // 4, dimList[3] // 8, kSize, stride=1, padding=kSize // 2, bias=False,
|
368 |
+
norm=norm, act=act, num_groups=(dimList[3] // 4) // 16)
|
369 |
+
self.decoder2_3 = myConv(dimList[3] // 8, dimList[3] // 16, kSize, stride=1, padding=kSize // 2, bias=False,
|
370 |
+
norm=norm, act=act, num_groups=(dimList[3] // 8) // 16)
|
371 |
+
|
372 |
+
self.decoder2_4 = myConv(dimList[3] // 16, 1, kSize, stride=1, padding=kSize // 2, bias=False,
|
373 |
+
norm=norm, act=act, num_groups=(dimList[3] // 16) // 16)
|
374 |
+
########################################################################################################################
|
375 |
+
|
376 |
+
############################################ Pyramid Level 3 ###################################################
|
377 |
+
# decoder2 out2 : 1 x H/4 x W/4 (Level 3)
|
378 |
+
# decoder2_1_up2 : (H/8,W/8)->(H/4,W/4)
|
379 |
+
self.decoder2_1_up2 = upConvLayer(dimList[3] // 4, dimList[3] // 8, 2, norm, act, (dimList[3] // 4) // 16)
|
380 |
+
self.decoder2_1_reduc2 = myConv(dimList[3] // 8 + dimList[1], dimList[3] // 8 - 4, kSize=1, stride=1, padding=0,
|
381 |
+
bias=False,
|
382 |
+
norm=norm, act=act, num_groups=(dimList[3] // 8 + dimList[1]) // 16)
|
383 |
+
self.decoder2_1_1 = myConv(dimList[3] // 8, dimList[3] // 8, kSize, stride=1, padding=kSize // 2, bias=False,
|
384 |
+
norm=norm, act=act, num_groups=(dimList[3] // 8) // 16)
|
385 |
+
|
386 |
+
self.decoder2_1_2 = myConv(dimList[3] // 8, dimList[3] // 16, kSize, stride=1, padding=kSize // 2, bias=False,
|
387 |
+
norm=norm, act=act, num_groups=(dimList[3] // 8) // 16)
|
388 |
+
|
389 |
+
self.decoder2_1_3 = myConv(dimList[3] // 16, 1, kSize, stride=1, padding=kSize // 2, bias=False,
|
390 |
+
norm=norm, act=act, num_groups=(dimList[3] // 16) // 16)
|
391 |
+
########################################################################################################################
|
392 |
+
|
393 |
+
############################################ Pyramid Level 2 ###################################################
|
394 |
+
# decoder2 out3 : 1 x H/2 x W/2 (Level 2)
|
395 |
+
# decoder2_1_1_up3 : (H/4,W/4)->(H/2,W/2)
|
396 |
+
self.decoder2_1_1_up3 = upConvLayer(dimList[3] // 8, dimList[3] // 16, 2, norm, act, (dimList[3] // 8) // 16)
|
397 |
+
self.decoder2_1_1_reduc3 = myConv(dimList[3] // 16 + dimList[0], dimList[3] // 16 - 4, kSize=1, stride=1,
|
398 |
+
padding=0, bias=False,
|
399 |
+
norm=norm, act=act, num_groups=(dimList[3] // 16 + dimList[0]) // 16)
|
400 |
+
self.decoder2_1_1_1 = myConv(dimList[3] // 16, dimList[3] // 16, kSize, stride=1, padding=kSize // 2,
|
401 |
+
bias=False,
|
402 |
+
norm=norm, act=act, num_groups=(dimList[3] // 16) // 16)
|
403 |
+
|
404 |
+
self.decoder2_1_1_2 = myConv(dimList[3] // 16, 1, kSize, stride=1, padding=kSize // 2, bias=False,
|
405 |
+
norm=norm, act=act, num_groups=(dimList[3] // 16) // 16)
|
406 |
+
########################################################################################################################
|
407 |
+
|
408 |
+
############################################ Pyramid Level 1 ###################################################
|
409 |
+
# decoder5 out : 1 x H x W (Level 1)
|
410 |
+
# decoder2_1_1_1_up4 : (H/2,W/2)->(H,W)
|
411 |
+
self.decoder2_1_1_1_up4 = upConvLayer(dimList[3] // 16, dimList[3] // 16 - 4, 2, norm, act,
|
412 |
+
(dimList[3] // 16) // 16)
|
413 |
+
self.decoder2_1_1_1_1 = myConv(dimList[3] // 16, dimList[3] // 16, kSize, stride=1, padding=kSize // 2,
|
414 |
+
bias=False,
|
415 |
+
norm=norm, act=act, num_groups=(dimList[3] // 16) // 16)
|
416 |
+
|
417 |
+
self.decoder2_1_1_1_2 = myConv(dimList[3] // 16, dimList[3] // 32, kSize, stride=1, padding=kSize // 2,
|
418 |
+
bias=False,
|
419 |
+
norm=norm, act=act, num_groups=(dimList[3] // 16) // 16)
|
420 |
+
self.decoder2_1_1_1_3 = myConv(dimList[3] // 32, 1, kSize, stride=1, padding=kSize // 2, bias=False,
|
421 |
+
norm=norm, act=act, num_groups=(dimList[3] // 32) // 16)
|
422 |
+
########################################################################################################################
|
423 |
+
self.upscale = F.interpolate
|
424 |
+
|
425 |
+
def forward(self, x, rgb):
|
426 |
+
cat1, cat2, cat3, dense_feat = x[0], x[1], x[2], x[3]
|
427 |
+
rgb_lv6, rgb_lv5, rgb_lv4, rgb_lv3, rgb_lv2, rgb_lv1 = rgb[0], rgb[1], rgb[2], rgb[3], rgb[4], rgb[5]
|
428 |
+
dense_feat = self.ASPP(dense_feat) # Dense feature for lev 5
|
429 |
+
# decoder 1 - Pyramid level 5
|
430 |
+
lap_lv5 = torch.sigmoid(self.decoder1(dense_feat))
|
431 |
+
lap_lv5_up = self.upscale(lap_lv5, scale_factor=2, mode='bilinear')
|
432 |
+
|
433 |
+
# decoder 2 - Pyramid level 4
|
434 |
+
dec2 = self.decoder2_up1(dense_feat)
|
435 |
+
dec2 = self.decoder2_reduc1(torch.cat([dec2, cat3], dim=1))
|
436 |
+
dec2_up = self.decoder2_1(torch.cat([dec2, lap_lv5_up, rgb_lv4], dim=1))
|
437 |
+
dec2 = self.decoder2_2(dec2_up)
|
438 |
+
dec2 = self.decoder2_3(dec2)
|
439 |
+
lap_lv4 = torch.tanh(self.decoder2_4(dec2) + (0.1 * rgb_lv4.mean(dim=1, keepdim=True)))
|
440 |
+
# if depth range is (0,1), laplacian of image range is (-1,1)
|
441 |
+
lap_lv4_up = self.upscale(lap_lv4, scale_factor=2, mode='bilinear')
|
442 |
+
# decoder 2 - Pyramid level 3
|
443 |
+
dec3 = self.decoder2_1_up2(dec2_up)
|
444 |
+
dec3 = self.decoder2_1_reduc2(torch.cat([dec3, cat2], dim=1))
|
445 |
+
dec3_up = self.decoder2_1_1(torch.cat([dec3, lap_lv4_up, rgb_lv3], dim=1))
|
446 |
+
dec3 = self.decoder2_1_2(dec3_up)
|
447 |
+
lap_lv3 = torch.tanh(self.decoder2_1_3(dec3) + (0.1 * rgb_lv3.mean(dim=1, keepdim=True)))
|
448 |
+
# if depth range is (0,1), laplacian of image range is (-1,1)
|
449 |
+
lap_lv3_up = self.upscale(lap_lv3, scale_factor=2, mode='bilinear')
|
450 |
+
# decoder 2 - Pyramid level 2
|
451 |
+
dec4 = self.decoder2_1_1_up3(dec3_up)
|
452 |
+
dec4 = self.decoder2_1_1_reduc3(torch.cat([dec4, cat1], dim=1))
|
453 |
+
dec4_up = self.decoder2_1_1_1(torch.cat([dec4, lap_lv3_up, rgb_lv2], dim=1))
|
454 |
+
|
455 |
+
lap_lv2 = torch.tanh(self.decoder2_1_1_2(dec4_up) + (0.1 * rgb_lv2.mean(dim=1, keepdim=True)))
|
456 |
+
# if depth range is (0,1), laplacian of image range is (-1,1)
|
457 |
+
lap_lv2_up = self.upscale(lap_lv2, scale_factor=2, mode='bilinear')
|
458 |
+
# decoder 2 - Pyramid level 1
|
459 |
+
dec5 = self.decoder2_1_1_1_up4(dec4_up)
|
460 |
+
dec5 = self.decoder2_1_1_1_1(torch.cat([dec5, lap_lv2_up, rgb_lv1], dim=1))
|
461 |
+
dec5 = self.decoder2_1_1_1_2(dec5)
|
462 |
+
lap_lv1 = torch.tanh(self.decoder2_1_1_1_3(dec5) + (0.1 * rgb_lv1.mean(dim=1, keepdim=True)))
|
463 |
+
# if depth range is (0,1), laplacian of image range is (-1,1)
|
464 |
+
|
465 |
+
# Laplacian restoration
|
466 |
+
lap_lv4_img = lap_lv4 + lap_lv5_up
|
467 |
+
lap_lv3_img = lap_lv3 + self.upscale(lap_lv4_img, scale_factor=2, mode='bilinear')
|
468 |
+
lap_lv2_img = lap_lv2 + self.upscale(lap_lv3_img, scale_factor=2, mode='bilinear')
|
469 |
+
final_depth = lap_lv1 + self.upscale(lap_lv2_img, scale_factor=2, mode='bilinear')
|
470 |
+
final_depth = torch.sigmoid(final_depth)
|
471 |
+
return [(lap_lv5) * self.max_depth, (lap_lv4) * self.max_depth, (lap_lv3) * self.max_depth,
|
472 |
+
(lap_lv2) * self.max_depth, (lap_lv1) * self.max_depth], final_depth * self.max_depth
|
473 |
+
# fit laplacian image range (-80,80), depth image range(0,80)
|
474 |
+
|
475 |
+
|
476 |
+
class Lap_decoder_lv6(nn.Module):
|
477 |
+
def __init__(self, args, dimList):
|
478 |
+
super(Lap_decoder_lv6, self).__init__()
|
479 |
+
norm = args.norm
|
480 |
+
conv = conv_ws
|
481 |
+
if norm == 'GN':
|
482 |
+
if args.rank == 0:
|
483 |
+
print("==> Norm: GN")
|
484 |
+
else:
|
485 |
+
if args.rank == 0:
|
486 |
+
print("==> Norm: BN")
|
487 |
+
|
488 |
+
if args.act == 'ELU':
|
489 |
+
act = 'ELU'
|
490 |
+
elif args.act == 'Mish':
|
491 |
+
act = 'Mish'
|
492 |
+
else:
|
493 |
+
act = 'ReLU'
|
494 |
+
kSize = 3
|
495 |
+
self.max_depth = args.max_depth
|
496 |
+
self.ASPP = Dilated_bottleNeck_lv6(norm, act, dimList[4])
|
497 |
+
dimList[4] = dimList[4] // 2
|
498 |
+
self.dimList = dimList
|
499 |
+
############################################ Pyramid Level 6 ###################################################
|
500 |
+
# decoder1 out : 1 x H/32 x W/32 (Level 6)
|
501 |
+
self.decoder1 = nn.Sequential(
|
502 |
+
myConv(dimList[4] // 2, dimList[4] // 4, kSize, stride=1, padding=kSize // 2, bias=False,
|
503 |
+
norm=norm, act=act, num_groups=(dimList[4] // 2) // 16),
|
504 |
+
myConv(dimList[4] // 4, dimList[4] // 8, kSize, stride=1, padding=kSize // 2, bias=False,
|
505 |
+
norm=norm, act=act, num_groups=(dimList[4] // 4) // 16),
|
506 |
+
myConv(dimList[4] // 8, dimList[4] // 16, kSize, stride=1, padding=kSize // 2, bias=False,
|
507 |
+
norm=norm, act=act, num_groups=(dimList[4] // 8) // 16),
|
508 |
+
myConv(dimList[4] // 16, dimList[4] // 32, kSize, stride=1, padding=kSize // 2, bias=False,
|
509 |
+
norm=norm, act=act, num_groups=(dimList[4] // 16) // 16),
|
510 |
+
myConv(dimList[4] // 32, 1, kSize, stride=1, padding=kSize // 2, bias=False,
|
511 |
+
norm=norm, act=act, num_groups=(dimList[4] // 32) // 8)
|
512 |
+
)
|
513 |
+
########################################################################################################################
|
514 |
+
|
515 |
+
############################################ Pyramid Level 5 ###################################################
|
516 |
+
# decoder2 out : 1 x H/16 x W/16 (Level 5)
|
517 |
+
# decoder2_up : (H/32,W/32)->(H/16,W/16)
|
518 |
+
self.decoder2_up1 = upConvLayer(dimList[4] // 2, dimList[4] // 4, 2, norm, act, (dimList[4] // 2) // 16)
|
519 |
+
self.decoder2_reduc1 = myConv(dimList[4] // 4 + dimList[3], dimList[4] // 4 - 4, kSize=1, stride=1, padding=0,
|
520 |
+
bias=False,
|
521 |
+
norm=norm, act=act, num_groups=(dimList[4] // 4 + dimList[3]) // 16)
|
522 |
+
self.decoder2_1 = myConv(dimList[4] // 4, dimList[4] // 4, kSize, stride=1, padding=kSize // 2, bias=False,
|
523 |
+
norm=norm, act=act, num_groups=(dimList[4] // 4) // 16)
|
524 |
+
|
525 |
+
self.decoder2_2 = myConv(dimList[4] // 4, dimList[4] // 8, kSize, stride=1, padding=kSize // 2, bias=False,
|
526 |
+
norm=norm, act=act, num_groups=(dimList[4] // 4) // 16)
|
527 |
+
self.decoder2_3 = myConv(dimList[4] // 8, dimList[4] // 16, kSize, stride=1, padding=kSize // 2, bias=False,
|
528 |
+
norm=norm, act=act, num_groups=(dimList[4] // 8) // 16)
|
529 |
+
|
530 |
+
self.decoder2_4 = myConv(dimList[4] // 16, 1, kSize, stride=1, padding=kSize // 2, bias=False,
|
531 |
+
norm=norm, act=act, num_groups=(dimList[4] // 16) // 16)
|
532 |
+
########################################################################################################################
|
533 |
+
|
534 |
+
############################################ Pyramid Level 4 ###################################################
|
535 |
+
# decoder2 out2 : 1 x H/8 x W/8 (Level 4)
|
536 |
+
# decoder2_1_up2 : (H/16,W/16)->(H/8,W/8)
|
537 |
+
self.decoder2_1_up2 = upConvLayer(dimList[4] // 4, dimList[4] // 8, 2, norm, act, (dimList[4] // 4) // 16)
|
538 |
+
self.decoder2_1_reduc2 = myConv(dimList[4] // 8 + dimList[2], dimList[4] // 8 - 4, kSize=1, stride=1, padding=0,
|
539 |
+
bias=False,
|
540 |
+
norm=norm, act=act, num_groups=(dimList[4] // 8 + dimList[2]) // 16)
|
541 |
+
self.decoder2_1_1 = myConv(dimList[4] // 8, dimList[4] // 8, kSize, stride=1, padding=kSize // 2, bias=False,
|
542 |
+
norm=norm, act=act, num_groups=(dimList[4] // 8) // 16)
|
543 |
+
|
544 |
+
self.decoder2_1_2 = myConv(dimList[4] // 8, dimList[4] // 16, kSize, stride=1, padding=kSize // 2, bias=False,
|
545 |
+
norm=norm, act=act, num_groups=(dimList[4] // 8) // 16)
|
546 |
+
|
547 |
+
self.decoder2_1_3 = myConv(dimList[4] // 16, 1, kSize, stride=1, padding=kSize // 2, bias=False,
|
548 |
+
norm=norm, act=act, num_groups=(dimList[4] // 16) // 16)
|
549 |
+
########################################################################################################################
|
550 |
+
|
551 |
+
############################################ Pyramid Level 3 ###################################################
|
552 |
+
# decoder2 out3 : 1 x H/4 x W/4 (Level 3)
|
553 |
+
# decoder2_1_1_up3 : (H/8,W/8)->(H/4,W/4)
|
554 |
+
self.decoder2_1_1_up3 = upConvLayer(dimList[4] // 8, dimList[4] // 16, 2, norm, act, (dimList[4] // 8) // 16)
|
555 |
+
self.decoder2_1_1_reduc3 = myConv(dimList[4] // 16 + dimList[1], dimList[4] // 16 - 4, kSize=1, stride=1,
|
556 |
+
padding=0, bias=False,
|
557 |
+
norm=norm, act=act, num_groups=(dimList[4] // 16 + dimList[1]) // 8)
|
558 |
+
self.decoder2_1_1_1 = myConv(dimList[4] // 16, dimList[4] // 16, kSize, stride=1, padding=kSize // 2,
|
559 |
+
bias=False,
|
560 |
+
norm=norm, act=act, num_groups=(dimList[4] // 16) // 16)
|
561 |
+
|
562 |
+
self.decoder2_1_1_2 = myConv(dimList[4] // 16, 1, kSize, stride=1, padding=kSize // 2, bias=False,
|
563 |
+
norm=norm, act=act, num_groups=(dimList[4] // 16) // 16)
|
564 |
+
########################################################################################################################
|
565 |
+
|
566 |
+
############################################ Pyramid Level 2 ###################################################
|
567 |
+
# decoder2 out4 : 1 x H/2 x W/2 (Level 2)
|
568 |
+
# decoder2_1_1_1_up4 : (H/4,W/4)->(H/2,W/2)
|
569 |
+
self.decoder2_1_1_1_up4 = upConvLayer(dimList[4] // 16, dimList[4] // 32, 2, norm, act,
|
570 |
+
(dimList[4] // 16) // 16)
|
571 |
+
self.decoder2_1_1_1_reduc4 = myConv(dimList[4] // 32 + dimList[0], dimList[4] // 32 - 4, kSize=1, stride=1,
|
572 |
+
padding=0, bias=False,
|
573 |
+
norm=norm, act=act, num_groups=(dimList[4] // 32 + dimList[0]) // 8)
|
574 |
+
self.decoder2_1_1_1_1 = myConv(dimList[4] // 32, dimList[4] // 32, kSize, stride=1, padding=kSize // 2,
|
575 |
+
bias=False,
|
576 |
+
norm=norm, act=act, num_groups=(dimList[4] // 32) // 8)
|
577 |
+
|
578 |
+
self.decoder2_1_1_1_2 = myConv(dimList[4] // 32, 1, kSize, stride=1, padding=kSize // 2, bias=False,
|
579 |
+
norm=norm, act=act, num_groups=(dimList[4] // 32) // 8)
|
580 |
+
########################################################################################################################
|
581 |
+
|
582 |
+
############################################ Pyramid Level 1 ###################################################
|
583 |
+
# decoder5 out : 1 x H x W (Level 1)
|
584 |
+
# decoder2_1_1_1_1_up5 : (H/2,W/2)->(H,W)
|
585 |
+
self.decoder2_1_1_1_1_up5 = upConvLayer(dimList[4] // 32, dimList[4] // 32 - 4, 2, norm, act,
|
586 |
+
(dimList[4] // 32) // 8) # H x W (64 -> 60)
|
587 |
+
self.decoder2_1_1_1_1_1 = myConv(dimList[4] // 32, dimList[4] // 32, kSize, stride=1, padding=kSize // 2,
|
588 |
+
bias=False,
|
589 |
+
norm=norm, act=act, num_groups=(dimList[4] // 32) // 8)
|
590 |
+
|
591 |
+
self.decoder2_1_1_1_1_2 = myConv(dimList[4] // 32, dimList[4] // 64, kSize, stride=1, padding=kSize // 2,
|
592 |
+
bias=False,
|
593 |
+
norm=norm, act=act, num_groups=(dimList[4] // 32) // 8)
|
594 |
+
self.decoder2_1_1_1_1_3 = myConv(dimList[4] // 64, 1, kSize, stride=1, padding=kSize // 2, bias=False,
|
595 |
+
norm=norm, act=act, num_groups=(dimList[4] // 64) // 4)
|
596 |
+
########################################################################################################################
|
597 |
+
self.upscale = F.interpolate
|
598 |
+
|
599 |
+
def forward(self, x, rgb):
|
600 |
+
cat1, cat2, cat3, cat4, dense_feat = x[0], x[1], x[2], x[3], x[4]
|
601 |
+
rgb_lv6, rgb_lv5, rgb_lv4, rgb_lv3, rgb_lv2, rgb_lv1 = rgb[0], rgb[1], rgb[2], rgb[3], rgb[4], rgb[5]
|
602 |
+
dense_feat = self.ASPP(dense_feat) # Dense feature for lev 6
|
603 |
+
# decoder 1 - Pyramid level 6
|
604 |
+
lap_lv6 = torch.sigmoid(self.decoder1(dense_feat))
|
605 |
+
lap_lv6_up = self.upscale(lap_lv6, scale_factor=2, mode='bilinear')
|
606 |
+
|
607 |
+
# decoder 2 - Pyramid level 5
|
608 |
+
dec2 = self.decoder2_up1(dense_feat)
|
609 |
+
dec2 = self.decoder2_reduc1(torch.cat([dec2, cat4], dim=1))
|
610 |
+
dec2_up = self.decoder2_1(torch.cat([dec2, lap_lv6_up, rgb_lv5], dim=1))
|
611 |
+
dec2 = self.decoder2_2(dec2_up)
|
612 |
+
dec2 = self.decoder2_3(dec2)
|
613 |
+
lap_lv5 = torch.tanh(self.decoder2_4(dec2) + (0.1 * rgb_lv5.mean(dim=1, keepdim=True)))
|
614 |
+
# if depth range is (0,1), laplacian image range is (-1,1)
|
615 |
+
lap_lv5_up = self.upscale(lap_lv5, scale_factor=2, mode='bilinear')
|
616 |
+
# decoder 2 - Pyramid level 4
|
617 |
+
dec3 = self.decoder2_1_up2(dec2_up)
|
618 |
+
dec3 = self.decoder2_1_reduc2(torch.cat([dec3, cat3], dim=1))
|
619 |
+
dec3_up = self.decoder2_1_1(torch.cat([dec3, lap_lv5_up, rgb_lv4], dim=1))
|
620 |
+
dec3 = self.decoder2_1_2(dec3_up)
|
621 |
+
lap_lv4 = torch.tanh(self.decoder2_1_3(dec3) + (0.1 * rgb_lv4.mean(dim=1, keepdim=True)))
|
622 |
+
# if depth range is (0,1), laplacian image range is (-1,1)
|
623 |
+
lap_lv4_up = self.upscale(lap_lv4, scale_factor=2, mode='bilinear')
|
624 |
+
# decoder 2 - Pyramid level 3
|
625 |
+
dec4 = self.decoder2_1_1_up3(dec3_up)
|
626 |
+
dec4 = self.decoder2_1_1_reduc3(torch.cat([dec4, cat2], dim=1))
|
627 |
+
dec4_up = self.decoder2_1_1_1(torch.cat([dec4, lap_lv4_up, rgb_lv3], dim=1))
|
628 |
+
|
629 |
+
lap_lv3 = torch.tanh(self.decoder2_1_1_2(dec4_up) + (0.1 * rgb_lv3.mean(dim=1, keepdim=True)))
|
630 |
+
# if depth range is (0,1), laplacian image range is (-1,1)
|
631 |
+
lap_lv3_up = self.upscale(lap_lv3, scale_factor=2, mode='bilinear')
|
632 |
+
# decoder 2 - Pyramid level 2
|
633 |
+
dec5 = self.decoder2_1_1_1_up4(dec4_up)
|
634 |
+
dec5 = self.decoder2_1_1_1_reduc4(torch.cat([dec5, cat1], dim=1))
|
635 |
+
dec5_up = self.decoder2_1_1_1_1(torch.cat([dec5, lap_lv3_up, rgb_lv2], dim=1))
|
636 |
+
|
637 |
+
lap_lv2 = torch.tanh(self.decoder2_1_1_1_2(dec5_up) + (0.1 * rgb_lv2.mean(dim=1, keepdim=True)))
|
638 |
+
# if depth range is (0,1), laplacian image range is (-1,1)
|
639 |
+
lap_lv2_up = self.upscale(lap_lv2, scale_factor=2, mode='bilinear')
|
640 |
+
# decoder 2 - Pyramid level 1
|
641 |
+
dec6 = self.decoder2_1_1_1_1_up5(dec5_up)
|
642 |
+
dec6 = self.decoder2_1_1_1_1_1(torch.cat([dec6, lap_lv2_up, rgb_lv1], dim=1))
|
643 |
+
dec6 = self.decoder2_1_1_1_1_2(dec6)
|
644 |
+
lap_lv1 = torch.tanh(self.decoder2_1_1_1_1_3(dec6) + (0.1 * rgb_lv1.mean(dim=1, keepdim=True)))
|
645 |
+
# if depth range is (0,1), laplacian image range is (-1,1)
|
646 |
+
|
647 |
+
# Laplacian restoration
|
648 |
+
lap_lv5_img = lap_lv5 + lap_lv6_up
|
649 |
+
lap_lv4_img = lap_lv4 + self.upscale(lap_lv5_img, scale_factor=2, mode='bilinear')
|
650 |
+
lap_lv3_img = lap_lv3 + self.upscale(lap_lv4_img, scale_factor=2, mode='bilinear')
|
651 |
+
lap_lv2_img = lap_lv2 + self.upscale(lap_lv3_img, scale_factor=2, mode='bilinear')
|
652 |
+
final_depth = lap_lv1 + self.upscale(lap_lv2_img, scale_factor=2, mode='bilinear')
|
653 |
+
final_depth = torch.sigmoid(final_depth)
|
654 |
+
return [(lap_lv6) * self.max_depth, (lap_lv5) * self.max_depth, (lap_lv4) * self.max_depth,
|
655 |
+
(lap_lv3) * self.max_depth, (lap_lv2) * self.max_depth,
|
656 |
+
(lap_lv1) * self.max_depth], final_depth * self.max_depth
|
657 |
+
# fit laplacian image range (-80,80), depth image range(0,80)
|
658 |
+
|
659 |
+
|
660 |
+
# Laplacian Depth Residual Network
|
661 |
+
class LDRN(nn.Module):
|
662 |
+
def __init__(self, args):
|
663 |
+
super(LDRN, self).__init__()
|
664 |
+
lv6 = args.lv6
|
665 |
+
self.encoder = deepFeatureExtractor_ResNext101(args, lv6)
|
666 |
+
|
667 |
+
if lv6 is True:
|
668 |
+
self.decoder = Lap_decoder_lv6(args, self.encoder.dimList)
|
669 |
+
else:
|
670 |
+
self.decoder = Lap_decoder_lv5(args, self.encoder.dimList)
|
671 |
+
|
672 |
+
def forward(self, x):
|
673 |
+
out_featList = self.encoder(x)
|
674 |
+
rgb_down2 = F.interpolate(x, scale_factor=0.5, mode='bilinear')
|
675 |
+
rgb_down4 = F.interpolate(rgb_down2, scale_factor=0.5, mode='bilinear')
|
676 |
+
rgb_down8 = F.interpolate(rgb_down4, scale_factor=0.5, mode='bilinear')
|
677 |
+
rgb_down16 = F.interpolate(rgb_down8, scale_factor=0.5, mode='bilinear')
|
678 |
+
rgb_down32 = F.interpolate(rgb_down16, scale_factor=0.5, mode='bilinear')
|
679 |
+
rgb_up16 = F.interpolate(rgb_down32, rgb_down16.shape[2:], mode='bilinear')
|
680 |
+
rgb_up8 = F.interpolate(rgb_down16, rgb_down8.shape[2:], mode='bilinear')
|
681 |
+
rgb_up4 = F.interpolate(rgb_down8, rgb_down4.shape[2:], mode='bilinear')
|
682 |
+
rgb_up2 = F.interpolate(rgb_down4, rgb_down2.shape[2:], mode='bilinear')
|
683 |
+
rgb_up = F.interpolate(rgb_down2, x.shape[2:], mode='bilinear')
|
684 |
+
lap1 = x - rgb_up
|
685 |
+
lap2 = rgb_down2 - rgb_up2
|
686 |
+
lap3 = rgb_down4 - rgb_up4
|
687 |
+
lap4 = rgb_down8 - rgb_up8
|
688 |
+
lap5 = rgb_down16 - rgb_up16
|
689 |
+
rgb_list = [rgb_down32, lap5, lap4, lap3, lap2, lap1]
|
690 |
+
|
691 |
+
d_res_list, depth = self.decoder(out_featList, rgb_list)
|
692 |
+
return d_res_list, depth
|
693 |
+
|
694 |
+
def train(self, mode=True):
|
695 |
+
super().train(mode)
|
696 |
+
self.encoder.freeze_bn()
|