vijaye12 commited on
Commit
7da32b4
·
verified ·
1 Parent(s): 97a1625

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -8
README.md CHANGED
@@ -56,18 +56,18 @@ fine-tuned for multi-variate forecasts with just 5% of the training data to be c
56
 
57
  ## Model Capabilities with example scripts
58
 
59
- The below model scripts can be used for any TTM models. Please update the HF model URL and branch name in the `from_pretrained` call appropriately to pick the model of your choice.
60
 
61
- - Getting Started [colab](https://colab.research.google.com/github/IBM/tsfm/blob/main/notebooks/tutorial/ttm_tutorial.ipynb)
62
- - Zeroshot Multivariate Forecasting [Example](https://github.com/ibm-granite/granite-tsfm/blob/ttm_v2_release/notebooks/hfdemo/ttm_getting_started.ipynb)
63
  - Finetuned Multivariate Forecasting:
64
- - Channel-Independent Finetuning [Example](https://github.com/ibm-granite/granite-tsfm/blob/ttm_v2_release/notebooks/hfdemo/ttm_getting_started.ipynb) [Example: M4-Hourly finetuning](https://github.com/ibm-granite/granite-tsfm/blob/ttm_v2_release/notebooks/hfdemo/tinytimemixer/ttm_m4_hourly.ipynb)
65
- - Channel-Mix Finetuning [Example](https://github.com/ibm-granite/granite-tsfm/blob/ttm_v2_release/notebooks/tutorial/ttm_channel_mix_finetuning.ipynb)
66
  - **New Releases (extended features released on October 2024)**
67
- - Finetuning and Forecasting with Exogenous/Control Variables [Example](https://github.com/ibm-granite/granite-tsfm/blob/ttm_v2_release/notebooks/tutorial/ttm_with_exog_tutorial.ipynb)
68
  - Finetuning and Forecasting with static categorical features [Example: To be added soon]
69
- - Rolling Forecasts - Extend forecast lengths beyond 96 via rolling capability [Example](https://github.com/ibm-granite/granite-tsfm/blob/ttm_v2_release/notebooks/hfdemo/ttm_rolling_prediction_getting_started.ipynb)
70
- - Helper scripts for optimal Learning Rate suggestions for Finetuning [Example](https://github.com/ibm-granite/granite-tsfm/blob/ttm_v2_release/notebooks/tutorial/ttm_with_exog_tutorial.ipynb)
71
 
72
  ## Benchmarks
73
 
 
56
 
57
  ## Model Capabilities with example scripts
58
 
59
+ The below model scripts can be used for any of the above TTM models. Please update the HF model URL and branch name in the `from_pretrained` call appropriately to pick the model of your choice.
60
 
61
+ - Getting Started [[colab]](https://colab.research.google.com/github/IBM/tsfm/blob/main/notebooks/tutorial/ttm_tutorial.ipynb)
62
+ - Zeroshot Multivariate Forecasting [[Example]](https://github.com/ibm-granite/granite-tsfm/blob/ttm_v2_release/notebooks/hfdemo/ttm_getting_started.ipynb)
63
  - Finetuned Multivariate Forecasting:
64
+ - Channel-Independent Finetuning [[Example]](https://github.com/ibm-granite/granite-tsfm/blob/ttm_v2_release/notebooks/hfdemo/ttm_getting_started.ipynb) [M4-Hourly finetuning](https://github.com/ibm-granite/granite-tsfm/blob/ttm_v2_release/notebooks/hfdemo/tinytimemixer/ttm_m4_hourly.ipynb)
65
+ - Channel-Mix Finetuning [[Example]](https://github.com/ibm-granite/granite-tsfm/blob/ttm_v2_release/notebooks/tutorial/ttm_channel_mix_finetuning.ipynb)
66
  - **New Releases (extended features released on October 2024)**
67
+ - Finetuning and Forecasting with Exogenous/Control Variables [[Example]](https://github.com/ibm-granite/granite-tsfm/blob/ttm_v2_release/notebooks/tutorial/ttm_with_exog_tutorial.ipynb)
68
  - Finetuning and Forecasting with static categorical features [Example: To be added soon]
69
+ - Rolling Forecasts - Extend forecast lengths beyond 96 via rolling capability [[Example]](https://github.com/ibm-granite/granite-tsfm/blob/ttm_v2_release/notebooks/hfdemo/ttm_rolling_prediction_getting_started.ipynb)
70
+ - Helper scripts for optimal Learning Rate suggestions for Finetuning [[Example]](https://github.com/ibm-granite/granite-tsfm/blob/ttm_v2_release/notebooks/tutorial/ttm_with_exog_tutorial.ipynb)
71
 
72
  ## Benchmarks
73