ifmain commited on
Commit
823c424
·
verified ·
1 Parent(s): f13902e

Upload 2 files

Browse files
Files changed (2) hide show
  1. moderation_model.pth +3 -0
  2. test.py +71 -0
moderation_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb5f1cbf7c576b2d1ea0ee801d90178b2d392ba37256573bc8454c38ae521854
3
+ size 204952
test.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.optim as optim
6
+ import torch.nn.functional as F
7
+ from torch.utils.data import Dataset, DataLoader
8
+
9
+ from transformers import AutoTokenizer, AutoModel
10
+
11
+ device = "cuda" if torch.cuda.is_available() else "cpu"
12
+
13
+ tokenizer_embeddings = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
14
+ model_embeddings = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2').to(device)
15
+
16
+ class ModerationModel(nn.Module):
17
+ def __init__(self):
18
+ input_size = 384
19
+ hidden_size = 128
20
+ output_size = 11
21
+ super(ModerationModel, self).__init__()
22
+ self.fc1 = nn.Linear(input_size, hidden_size)
23
+ self.fc2 = nn.Linear(hidden_size, output_size)
24
+
25
+ def forward(self, x):
26
+ x = F.relu(self.fc1(x))
27
+ x = self.fc2(x)
28
+ return x
29
+
30
+ def mean_pooling(model_output, attention_mask):
31
+ token_embeddings = model_output[0]
32
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
33
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
34
+
35
+ def getEmbeddings(sentences):
36
+ encoded_input = tokenizer_embeddings(sentences, padding=True, truncation=True, return_tensors='pt').to(device)
37
+ with torch.no_grad():
38
+ model_output = model_embeddings(**encoded_input)
39
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
40
+ return sentence_embeddings.cpu()
41
+
42
+ def getEmb(text):
43
+ sentences = [text]
44
+ sentence_embeddings = getEmbeddings(sentences)
45
+ return sentence_embeddings.tolist()[0]
46
+
47
+ def predict(model, embeddings):
48
+ model.eval()
49
+ with torch.no_grad():
50
+ embeddings_tensor = torch.tensor(embeddings, dtype=torch.float)
51
+ outputs = model(embeddings_tensor.unsqueeze(0))
52
+ predicted_scores = torch.sigmoid(outputs)
53
+ predicted_scores = predicted_scores.squeeze(0).tolist()
54
+ category_names = ["harassment", "harassment-threatening", "hate", "hate-threatening", "self-harm", "self-harm-instructions", "self-harm-intent", "sexual", "sexual-minors", "violence", "violence-graphic"]
55
+
56
+ result = {category: score for category, score in zip(category_names, predicted_scores)}
57
+ detected = {category: score > 0.5 for category, score in zip(category_names, predicted_scores)}
58
+ detect_value = any(detected.values())
59
+
60
+ return {"category_scores": result, 'detect': detected, 'detected': detect_value}
61
+
62
+
63
+ print('Load model')
64
+ moderation = ModerationModel()
65
+ moderation.load_state_dict(torch.load('moderation_model.pth'))
66
+
67
+ text = "I want to kill them."
68
+
69
+ embeddings_for_prediction = getEmb(text)
70
+ prediction = predict(moderation, embeddings_for_prediction)
71
+ print(json.dumps(prediction,indent=4))