Ishaan Gupta commited on
Commit
0361a01
·
1 Parent(s): 6b7380d

custom handler

Browse files
Files changed (3) hide show
  1. handler.py +53 -0
  2. requirements.txt +2 -0
  3. test_handler.py +40 -0
handler.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Any
2
+ from PIL import Image
3
+ from transformers import AutoProcessor, AutoModelForVision2Seq
4
+ import base64
5
+ from io import BytesIO
6
+
7
+
8
+ class EndpointHandler():
9
+ def __init__(self, path=""):
10
+ # Preload all the elements you are going to need at inference.
11
+ # pseudo:
12
+ # self.model= load_model(path)
13
+ self.model = AutoModelForVision2Seq.from_pretrained("microsoft/kosmos-2-patch14-224").to("cuda")
14
+ self.processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224")
15
+
16
+ # prompt = "<grounding>An image of"
17
+
18
+ def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
19
+
20
+ prompt = data.pop("prompt")
21
+ image_base64 = data.pop("image_base64")
22
+
23
+ image_data = base64.b64decode(image_base64)
24
+ image = Image.open(BytesIO(image_data))
25
+
26
+ inputs = self.processor(text=prompt, images=image, return_tensors="pt").to("cuda")
27
+
28
+ generated_ids = self.model.generate(
29
+ pixel_values=inputs["pixel_values"],
30
+ input_ids=inputs["input_ids"],
31
+ attention_mask=inputs["attention_mask"],
32
+ image_embeds=None,
33
+ image_embeds_position_mask=inputs["image_embeds_position_mask"],
34
+ use_cache=True,
35
+ max_new_tokens=128,
36
+ )
37
+ generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
38
+
39
+ # Specify `cleanup_and_extract=False` in order to see the raw model generation.
40
+ processed_text = self.processor.post_process_generation(generated_text, cleanup_and_extract=False)
41
+
42
+ # print(processed_text)
43
+ # `<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911></object>.`
44
+
45
+ # By default, the generated text is cleanup and the entities are extracted.
46
+ processed_text, entities = self.processor.post_process_generation(generated_text)
47
+
48
+ # print(processed_text)
49
+ # `An image of a snowman warming himself by a fire.`
50
+ return [{"processed_text": processed_text}]
51
+
52
+ # print(entities)
53
+ # `[('a snowman', (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]), ('a fire', (41, 47), [(0.171875, 0.015625, 0.484375, 0.890625)])]`
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ base64
2
+ pillow
test_handler.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from handler import EndpointHandler
2
+ from PIL import Image
3
+ import requests
4
+ import base64
5
+ from io import BytesIO
6
+ import time
7
+
8
+ # init handler
9
+ my_handler = EndpointHandler(path=".")
10
+
11
+
12
+
13
+ # prompt = "<grounding>An image of"
14
+ prompt = "<grounding>Describe this image in detail"
15
+
16
+ url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.png"
17
+ image = Image.open(requests.get(url, stream=True).raw)
18
+
19
+ # The original Kosmos-2 demo saves the image first then reload it. For some images, this will give slightly different image input and change the generation outputs.
20
+ image.save("new_image.jpg")
21
+ image = Image.open("img1.jpg")
22
+ buffered = BytesIO()
23
+ image.save(buffered, format='JPEG')
24
+ image_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
25
+
26
+ # prepare sample payload
27
+ non_holiday_payload = {"prompt": prompt, "image_base64": image_base64}
28
+ # holiday_payload = {"inputs": "Today is a though day", "date": "2022-07-04"}
29
+ init_t = time.time()
30
+ # test the handler
31
+ non_holiday_pred=my_handler(non_holiday_payload)
32
+ # holiday_payload=my_handler(holiday_payload)
33
+
34
+ # show results
35
+ print("image_description", non_holiday_pred)
36
+ print(time.time() - init_t)
37
+ # print("holiday_payload", holiday_payload)
38
+
39
+ # non_holiday_pred [{'label': 'joy', 'score': 0.9985942244529724}]
40
+ # holiday_payload [{'label': 'happy', 'score': 1}]