--- datasets: - shenxq/OneVision - shenxq/VideoChat2 base_model: - Vision-CAIR/LongVU_Qwen2_7B_img pipeline_tag: video-text-to-text model-index: - name: llava-onevision-qwen-7b-ov results: - task: type: multimodal dataset: name: EgoSchema type: egoschema metrics: - type: accuracy value: 67.6 name: accuracy verified: true - task: type: multimodal dataset: name: MLVU type: mlvu metrics: - type: accuracy value: 65.4 name: accuracy verified: true - task: type: multimodal dataset: name: MVBench type: mvbench metrics: - type: accuracy value: 66.9 name: accuracy verified: true - task: type: multimodal dataset: name: VideoMME type: videomme metrics: - type: accuracy value: 60.6 name: accuracy verified: true library_name: transformers --- # LongVU This repository contains the model based on Qwen2-7B as presented in [LongVU: Spatiotemporal Adaptive Compression for Long Video-Language Understanding](https://huggingface.co/papers/2410.17434). Play with the model on the [HF demo](https://huggingface.co/spaces/Vision-CAIR/LongVU).
# Use We provide the simple generation process for using our model. For more details, you could refer to [Github](https://github.com/Vision-CAIR/LongVU) ```python # git clone https://github.com/Vision-CAIR/LongVU import numpy as np import torch from longvu.builder import load_pretrained_model from longvu.constants import ( DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX, ) from longvu.conversation import conv_templates, SeparatorStyle from longvu.mm_datautils import ( KeywordsStoppingCriteria, process_images, tokenizer_image_token, ) from decord import cpu, VideoReader tokenizer, model, image_processor, context_len = load_pretrained_model( "./checkpoints/longvu_qwen", None, "cambrian_qwen", ) model.eval() video_path = "./examples/video1.mp4" qs = "Describe this video in detail" vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) fps = float(vr.get_avg_fps()) frame_indices = np.array([i for i in range(0, len(vr), round(fps),)]) video = [] for frame_index in frame_indices: img = vr[frame_index].asnumpy() video.append(img) video = np.stack(video) image_sizes = [video[0].shape[:2]] video = process_images(video, image_processor, model.config) video = [item.unsqueeze(0) for item in video] qs = DEFAULT_IMAGE_TOKEN + "\n" + qs conv = conv_templates["qwen"].copy() conv.append_message(conv.roles[0], qs) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(model.device) stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) with torch.inference_mode(): output_ids = model.generate( input_ids, images=video, image_sizes=image_sizes, do_sample=False, temperature=0.2, max_new_tokens=128, use_cache=True, stopping_criteria=[stopping_criteria], ) pred = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() ``` # Citation ``` @article{shen2024longvu, title={LongVU: Spatiotemporal Adaptive Compression for Long Video-Language Understanding}, author={Shen, Xiaoqian and Xiong, Yunyang and Zhao, Changsheng and Wu, Lemeng and Chen, Jun and Zhu, Chenchen and Liu, Zechun and Xiao, Fanyi and Varadarajan, Balakrishnan and Bordes, Florian and Liu, Zhuang and Xu, Hu and J. Kim, Hyunwoo and Soran, Bilge and Krishnamoorthi, Raghuraman and Elhoseiny, Mohamed and Chandra, Vikas}, journal={arXiv:2410.17434}, year={2024} } ```