vfusion3d / modeling.py
jadechoghari's picture
Update modeling.py
5fad7f9 verified
raw
history blame
3.55 kB
#### modeling.py
import torch.nn as nn
from transformers import PreTrainedModel, PretrainedConfig
import torch
# import dinowrapper
from .lrm.models.encoders.dino_wrapper2 import DinoWrapper
from .transformer import TriplaneTransformer
from .lrm.models.rendering.synthesizer_part import TriplaneSynthesizer
class CameraEmbedder(nn.Module):
def __init__(self, raw_dim: int, embed_dim: int):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(raw_dim, embed_dim),
nn.SiLU(),
nn.Linear(embed_dim, embed_dim),
)
def forward(self, x):
return self.mlp(x)
class LRMGeneratorConfig(PretrainedConfig):
model_type = "lrm_generator"
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.camera_embed_dim = kwargs.get("camera_embed_dim", 1024)
self.rendering_samples_per_ray = kwargs.get("rendering_samples_per_ray", 128)
self.transformer_dim = kwargs.get("transformer_dim", 1024)
self.transformer_layers = kwargs.get("transformer_layers", 16)
self.transformer_heads = kwargs.get("transformer_heads", 16)
self.triplane_low_res = kwargs.get("triplane_low_res", 32)
self.triplane_high_res = kwargs.get("triplane_high_res", 64)
self.triplane_dim = kwargs.get("triplane_dim", 80)
self.encoder_freeze = kwargs.get("encoder_freeze", False)
self.encoder_model_name = kwargs.get("encoder_model_name", 'facebook/dinov2-base')
self.encoder_feat_dim = kwargs.get("encoder_feat_dim", 768)
class LRMGenerator(PreTrainedModel):
config_class = LRMGeneratorConfig
def __init__(self, config: LRMGeneratorConfig):
super().__init__(config)
self.encoder_feat_dim = config.encoder_feat_dim
self.camera_embed_dim = config.camera_embed_dim
self.encoder = DinoWrapper(
model_name=config.encoder_model_name,
freeze=config.encoder_freeze,
)
self.camera_embedder = CameraEmbedder(
raw_dim=12 + 4, embed_dim=config.camera_embed_dim,
)
self.transformer = TriplaneTransformer(
inner_dim=config.transformer_dim, num_layers=config.transformer_layers, num_heads=config.transformer_heads,
image_feat_dim=config.encoder_feat_dim,
camera_embed_dim=config.camera_embed_dim,
triplane_low_res=config.triplane_low_res, triplane_high_res=config.triplane_high_res, triplane_dim=config.triplane_dim,
)
self.synthesizer = TriplaneSynthesizer(
triplane_dim=config.triplane_dim, samples_per_ray=config.rendering_samples_per_ray,
)
def forward(self, image, camera):
assert image.shape[0] == camera.shape[0], "Batch size mismatch"
N = image.shape[0]
# encode image
image_feats = self.encoder(image)
assert image_feats.shape[-1] == self.encoder_feat_dim, \
f"Feature dimension mismatch: {image_feats.shape[-1]} vs {self.encoder_feat_dim}"
# embed camera
camera_embeddings = self.camera_embedder(camera)
assert camera_embeddings.shape[-1] == self.camera_embed_dim, \
f"Feature dimension mismatch: {camera_embeddings.shape[-1]} vs {self.camera_embed_dim}"
# transformer generating planes
planes = self.transformer(image_feats, camera_embeddings)
assert planes.shape[0] == N, "Batch size mismatch for planes"
assert planes.shape[1] == 3, "Planes should have 3 channels"
return planes