Upload model card
Browse files
README.md
ADDED
@@ -0,0 +1,2610 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- reinforcement-learning
|
4 |
+
- atari-alien
|
5 |
+
- atari-amidar
|
6 |
+
- atari-assault
|
7 |
+
- atari-asterix
|
8 |
+
- atari-asteroids
|
9 |
+
- atari-atlantis
|
10 |
+
- atari-bankheist
|
11 |
+
- atari-battlezone
|
12 |
+
- atari-beamrider
|
13 |
+
- atari-berzerk
|
14 |
+
- atari-bowling
|
15 |
+
- atari-boxing
|
16 |
+
- atari-breakout
|
17 |
+
- atari-centipede
|
18 |
+
- atari-choppercommand
|
19 |
+
- atari-crazyclimber
|
20 |
+
- atari-defender
|
21 |
+
- atari-demonattack
|
22 |
+
- atari-doubledunk
|
23 |
+
- atari-enduro
|
24 |
+
- atari-fishingderby
|
25 |
+
- atari-freeway
|
26 |
+
- atari-frostbite
|
27 |
+
- atari-gopher
|
28 |
+
- atari-gravitar
|
29 |
+
- atari-hero
|
30 |
+
- atari-icehockey
|
31 |
+
- atari-jamesbond
|
32 |
+
- atari-kangaroo
|
33 |
+
- atari-krull
|
34 |
+
- atari-kungfumaster
|
35 |
+
- atari-montezumarevenge
|
36 |
+
- atari-mspacman
|
37 |
+
- atari-namethisgame
|
38 |
+
- atari-phoenix
|
39 |
+
- atari-pitfall
|
40 |
+
- atari-pong
|
41 |
+
- atari-privateeye
|
42 |
+
- atari-qbert
|
43 |
+
- atari-riverraid
|
44 |
+
- atari-roadrunner
|
45 |
+
- atari-robotank
|
46 |
+
- atari-seaquest
|
47 |
+
- atari-skiing
|
48 |
+
- atari-solaris
|
49 |
+
- atari-spaceinvaders
|
50 |
+
- atari-stargunner
|
51 |
+
- atari-surround
|
52 |
+
- atari-tennis
|
53 |
+
- atari-timepilot
|
54 |
+
- atari-tutankham
|
55 |
+
- atari-upndown
|
56 |
+
- atari-venture
|
57 |
+
- atari-videopinball
|
58 |
+
- atari-wizardofwor
|
59 |
+
- atari-yarsrevenge
|
60 |
+
- atari-zaxxon
|
61 |
+
- babyai-action-obj-door
|
62 |
+
- babyai-blocked-unlock-pickup
|
63 |
+
- babyai-boss-level-no-unlock
|
64 |
+
- babyai-boss-level
|
65 |
+
- babyai-find-obj-s5
|
66 |
+
- babyai-go-to-door
|
67 |
+
- babyai-go-to-imp-unlock
|
68 |
+
- babyai-go-to-local
|
69 |
+
- babyai-go-to-obj-door
|
70 |
+
- babyai-go-to-obj
|
71 |
+
- babyai-go-to-red-ball-grey
|
72 |
+
- babyai-go-to-red-ball-no-dists
|
73 |
+
- babyai-go-to-red-ball
|
74 |
+
- babyai-go-to-red-blue-ball
|
75 |
+
- babyai-go-to-seq
|
76 |
+
- babyai-go-to
|
77 |
+
- babyai-key-corridor
|
78 |
+
- babyai-mini-boss-level
|
79 |
+
- babyai-move-two-across-s8n9
|
80 |
+
- babyai-one-room-s8
|
81 |
+
- babyai-open-door
|
82 |
+
- babyai-open-doors-order-n4
|
83 |
+
- babyai-open-red-door
|
84 |
+
- babyai-open-two-doors
|
85 |
+
- babyai-open
|
86 |
+
- babyai-pickup-above
|
87 |
+
- babyai-pickup-dist
|
88 |
+
- babyai-pickup-loc
|
89 |
+
- babyai-pickup
|
90 |
+
- babyai-put-next-local
|
91 |
+
- babyai-put-next
|
92 |
+
- babyai-synth-loc
|
93 |
+
- babyai-synth-seq
|
94 |
+
- babyai-synth
|
95 |
+
- babyai-unblock-pickup
|
96 |
+
- babyai-unlock-local
|
97 |
+
- babyai-unlock-pickup
|
98 |
+
- babyai-unlock-to-unlock
|
99 |
+
- babyai-unlock
|
100 |
+
- metaworld-assembly
|
101 |
+
- metaworld-basketball
|
102 |
+
- metaworld-bin-picking
|
103 |
+
- metaworld-box-close
|
104 |
+
- metaworld-button-press-topdown-wall
|
105 |
+
- metaworld-button-press-topdown
|
106 |
+
- metaworld-button-press-wall
|
107 |
+
- metaworld-button-press
|
108 |
+
- metaworld-coffee-button
|
109 |
+
- metaworld-coffee-pull
|
110 |
+
- metaworld-coffee-push
|
111 |
+
- metaworld-dial-turn
|
112 |
+
- metaworld-disassemble
|
113 |
+
- metaworld-door-close
|
114 |
+
- metaworld-door-lock
|
115 |
+
- metaworld-door-open
|
116 |
+
- metaworld-door-unlock
|
117 |
+
- metaworld-drawer-close
|
118 |
+
- metaworld-drawer-open
|
119 |
+
- metaworld-faucet-close
|
120 |
+
- metaworld-faucet-open
|
121 |
+
- metaworld-hammer
|
122 |
+
- metaworld-hand-insert
|
123 |
+
- metaworld-handle-press-side
|
124 |
+
- metaworld-handle-press
|
125 |
+
- metaworld-handle-pull-side
|
126 |
+
- metaworld-handle-pull
|
127 |
+
- metaworld-lever-pull
|
128 |
+
- metaworld-peg-insert-side
|
129 |
+
- metaworld-peg-unplug-side
|
130 |
+
- metaworld-pick-out-of-hole
|
131 |
+
- metaworld-pick-place-wall
|
132 |
+
- metaworld-pick-place
|
133 |
+
- metaworld-plate-slide-back-side
|
134 |
+
- metaworld-plate-slide-back
|
135 |
+
- metaworld-plate-slide-side
|
136 |
+
- metaworld-plate-slide
|
137 |
+
- metaworld-push-back
|
138 |
+
- metaworld-push-wall
|
139 |
+
- metaworld-push
|
140 |
+
- metaworld-reach-wall
|
141 |
+
- metaworld-reach
|
142 |
+
- metaworld-shelf-place
|
143 |
+
- metaworld-soccer
|
144 |
+
- metaworld-stick-pull
|
145 |
+
- metaworld-stick-push
|
146 |
+
- metaworld-sweep-into
|
147 |
+
- metaworld-sweep
|
148 |
+
- metaworld-window-close
|
149 |
+
- metaworld-window-open
|
150 |
+
- mujoco-ant
|
151 |
+
- mujoco-doublependulum
|
152 |
+
- mujoco-halfcheetah
|
153 |
+
- mujoco-hopper
|
154 |
+
- mujoco-humanoid
|
155 |
+
- mujoco-pendulum
|
156 |
+
- mujoco-pusher
|
157 |
+
- mujoco-reacher
|
158 |
+
- mujoco-standup
|
159 |
+
- mujoco-swimmer
|
160 |
+
- mujoco-walker
|
161 |
+
datasets: jat-project/jat-dataset
|
162 |
+
pipeline_tag: reinforcement-learning
|
163 |
+
model-index:
|
164 |
+
- name: jat-project/jat
|
165 |
+
results:
|
166 |
+
- task:
|
167 |
+
type: reinforcement-learning
|
168 |
+
name: Reinforcement Learning
|
169 |
+
dataset:
|
170 |
+
name: Atari 57
|
171 |
+
type: atari
|
172 |
+
metrics:
|
173 |
+
- type: iqm_expert_normalized_total_reward
|
174 |
+
value: 0.06 [0.06, 0.06]
|
175 |
+
name: IQM expert normalized total reward
|
176 |
+
- type: iqm_human_normalized_total_reward
|
177 |
+
value: 0.17 [0.16, 0.17]
|
178 |
+
name: IQM human normalized total reward
|
179 |
+
- task:
|
180 |
+
type: reinforcement-learning
|
181 |
+
name: Reinforcement Learning
|
182 |
+
dataset:
|
183 |
+
name: BabyAI
|
184 |
+
type: babyai
|
185 |
+
metrics:
|
186 |
+
- type: iqm_expert_normalized_total_reward
|
187 |
+
value: 0.99 [0.99, 0.99]
|
188 |
+
name: IQM expert normalized total reward
|
189 |
+
- task:
|
190 |
+
type: reinforcement-learning
|
191 |
+
name: Reinforcement Learning
|
192 |
+
dataset:
|
193 |
+
name: MetaWorld
|
194 |
+
type: metaworld
|
195 |
+
metrics:
|
196 |
+
- type: iqm_expert_normalized_total_reward
|
197 |
+
value: 0.68 [0.67, 0.69]
|
198 |
+
name: IQM expert normalized total reward
|
199 |
+
- task:
|
200 |
+
type: reinforcement-learning
|
201 |
+
name: Reinforcement Learning
|
202 |
+
dataset:
|
203 |
+
name: MuJoCo
|
204 |
+
type: mujoco
|
205 |
+
metrics:
|
206 |
+
- type: iqm_expert_normalized_total_reward
|
207 |
+
value: 0.81 [0.80, 0.82]
|
208 |
+
name: IQM expert normalized total reward
|
209 |
+
- task:
|
210 |
+
type: reinforcement-learning
|
211 |
+
name: Reinforcement Learning
|
212 |
+
dataset:
|
213 |
+
name: Alien
|
214 |
+
type: atari-alien
|
215 |
+
metrics:
|
216 |
+
- type: total_reward
|
217 |
+
value: 1085.90 +/- 396.36
|
218 |
+
name: Total reward
|
219 |
+
- type: expert_normalized_total_reward
|
220 |
+
value: 0.05 +/- 0.02
|
221 |
+
name: Expert normalized total reward
|
222 |
+
- type: human_normalized_total_reward
|
223 |
+
value: 0.12 +/- 0.06
|
224 |
+
name: Human normalized total reward
|
225 |
+
- task:
|
226 |
+
type: reinforcement-learning
|
227 |
+
name: Reinforcement Learning
|
228 |
+
dataset:
|
229 |
+
name: Amidar
|
230 |
+
type: atari-amidar
|
231 |
+
metrics:
|
232 |
+
- type: total_reward
|
233 |
+
value: 41.26 +/- 28.57
|
234 |
+
name: Total reward
|
235 |
+
- type: expert_normalized_total_reward
|
236 |
+
value: 0.02 +/- 0.01
|
237 |
+
name: Expert normalized total reward
|
238 |
+
- type: human_normalized_total_reward
|
239 |
+
value: 0.02 +/- 0.02
|
240 |
+
name: Human normalized total reward
|
241 |
+
- task:
|
242 |
+
type: reinforcement-learning
|
243 |
+
name: Reinforcement Learning
|
244 |
+
dataset:
|
245 |
+
name: Assault
|
246 |
+
type: atari-assault
|
247 |
+
metrics:
|
248 |
+
- type: total_reward
|
249 |
+
value: 772.89 +/- 59.34
|
250 |
+
name: Total reward
|
251 |
+
- type: expert_normalized_total_reward
|
252 |
+
value: 0.04 +/- 0.00
|
253 |
+
name: Expert normalized total reward
|
254 |
+
- type: human_normalized_total_reward
|
255 |
+
value: 1.06 +/- 0.11
|
256 |
+
name: Human normalized total reward
|
257 |
+
- task:
|
258 |
+
type: reinforcement-learning
|
259 |
+
name: Reinforcement Learning
|
260 |
+
dataset:
|
261 |
+
name: Asterix
|
262 |
+
type: atari-asterix
|
263 |
+
metrics:
|
264 |
+
- type: total_reward
|
265 |
+
value: 778.50 +/- 428.97
|
266 |
+
name: Total reward
|
267 |
+
- type: expert_normalized_total_reward
|
268 |
+
value: 0.16 +/- 0.12
|
269 |
+
name: Expert normalized total reward
|
270 |
+
- type: human_normalized_total_reward
|
271 |
+
value: 0.07 +/- 0.05
|
272 |
+
name: Human normalized total reward
|
273 |
+
- task:
|
274 |
+
type: reinforcement-learning
|
275 |
+
name: Reinforcement Learning
|
276 |
+
dataset:
|
277 |
+
name: Asteroids
|
278 |
+
type: atari-asteroids
|
279 |
+
metrics:
|
280 |
+
- type: total_reward
|
281 |
+
value: 1423.60 +/- 538.79
|
282 |
+
name: Total reward
|
283 |
+
- type: expert_normalized_total_reward
|
284 |
+
value: 0.00 +/- 0.00
|
285 |
+
name: Expert normalized total reward
|
286 |
+
- type: human_normalized_total_reward
|
287 |
+
value: 0.02 +/- 0.01
|
288 |
+
name: Human normalized total reward
|
289 |
+
- task:
|
290 |
+
type: reinforcement-learning
|
291 |
+
name: Reinforcement Learning
|
292 |
+
dataset:
|
293 |
+
name: Atlantis
|
294 |
+
type: atari-atlantis
|
295 |
+
metrics:
|
296 |
+
- type: total_reward
|
297 |
+
value: 23541.00 +/- 10376.72
|
298 |
+
name: Total reward
|
299 |
+
- type: expert_normalized_total_reward
|
300 |
+
value: 0.03 +/- 0.03
|
301 |
+
name: Expert normalized total reward
|
302 |
+
- type: human_normalized_total_reward
|
303 |
+
value: 0.66 +/- 0.64
|
304 |
+
name: Human normalized total reward
|
305 |
+
- task:
|
306 |
+
type: reinforcement-learning
|
307 |
+
name: Reinforcement Learning
|
308 |
+
dataset:
|
309 |
+
name: Bank Heist
|
310 |
+
type: atari-bankheist
|
311 |
+
metrics:
|
312 |
+
- type: total_reward
|
313 |
+
value: 685.50 +/- 157.92
|
314 |
+
name: Total reward
|
315 |
+
- type: expert_normalized_total_reward
|
316 |
+
value: 0.51 +/- 0.12
|
317 |
+
name: Expert normalized total reward
|
318 |
+
- type: human_normalized_total_reward
|
319 |
+
value: 0.91 +/- 0.21
|
320 |
+
name: Human normalized total reward
|
321 |
+
- task:
|
322 |
+
type: reinforcement-learning
|
323 |
+
name: Reinforcement Learning
|
324 |
+
dataset:
|
325 |
+
name: Battle Zone
|
326 |
+
type: atari-battlezone
|
327 |
+
metrics:
|
328 |
+
- type: total_reward
|
329 |
+
value: 12950.00 +/- 4306.68
|
330 |
+
name: Total reward
|
331 |
+
- type: expert_normalized_total_reward
|
332 |
+
value: 0.04 +/- 0.01
|
333 |
+
name: Expert normalized total reward
|
334 |
+
- type: human_normalized_total_reward
|
335 |
+
value: 0.34 +/- 0.12
|
336 |
+
name: Human normalized total reward
|
337 |
+
- task:
|
338 |
+
type: reinforcement-learning
|
339 |
+
name: Reinforcement Learning
|
340 |
+
dataset:
|
341 |
+
name: Beam Rider
|
342 |
+
type: atari-beamrider
|
343 |
+
metrics:
|
344 |
+
- type: total_reward
|
345 |
+
value: 762.04 +/- 243.25
|
346 |
+
name: Total reward
|
347 |
+
- type: expert_normalized_total_reward
|
348 |
+
value: 0.01 +/- 0.01
|
349 |
+
name: Expert normalized total reward
|
350 |
+
- type: human_normalized_total_reward
|
351 |
+
value: 0.02 +/- 0.01
|
352 |
+
name: Human normalized total reward
|
353 |
+
- task:
|
354 |
+
type: reinforcement-learning
|
355 |
+
name: Reinforcement Learning
|
356 |
+
dataset:
|
357 |
+
name: Berzerk
|
358 |
+
type: atari-berzerk
|
359 |
+
metrics:
|
360 |
+
- type: total_reward
|
361 |
+
value: 523.90 +/- 161.95
|
362 |
+
name: Total reward
|
363 |
+
- type: expert_normalized_total_reward
|
364 |
+
value: 0.01 +/- 0.00
|
365 |
+
name: Expert normalized total reward
|
366 |
+
- type: human_normalized_total_reward
|
367 |
+
value: 0.16 +/- 0.06
|
368 |
+
name: Human normalized total reward
|
369 |
+
- task:
|
370 |
+
type: reinforcement-learning
|
371 |
+
name: Reinforcement Learning
|
372 |
+
dataset:
|
373 |
+
name: Bowling
|
374 |
+
type: atari-bowling
|
375 |
+
metrics:
|
376 |
+
- type: total_reward
|
377 |
+
value: 29.99 +/- 11.49
|
378 |
+
name: Total reward
|
379 |
+
- type: expert_normalized_total_reward
|
380 |
+
value: 1.00 +/- 0.00
|
381 |
+
name: Expert normalized total reward
|
382 |
+
- type: human_normalized_total_reward
|
383 |
+
value: 0.05 +/- 0.08
|
384 |
+
name: Human normalized total reward
|
385 |
+
- task:
|
386 |
+
type: reinforcement-learning
|
387 |
+
name: Reinforcement Learning
|
388 |
+
dataset:
|
389 |
+
name: Boxing
|
390 |
+
type: atari-boxing
|
391 |
+
metrics:
|
392 |
+
- type: total_reward
|
393 |
+
value: 87.00 +/- 22.57
|
394 |
+
name: Total reward
|
395 |
+
- type: expert_normalized_total_reward
|
396 |
+
value: 0.89 +/- 0.23
|
397 |
+
name: Expert normalized total reward
|
398 |
+
- type: human_normalized_total_reward
|
399 |
+
value: 7.24 +/- 1.88
|
400 |
+
name: Human normalized total reward
|
401 |
+
- task:
|
402 |
+
type: reinforcement-learning
|
403 |
+
name: Reinforcement Learning
|
404 |
+
dataset:
|
405 |
+
name: Breakout
|
406 |
+
type: atari-breakout
|
407 |
+
metrics:
|
408 |
+
- type: total_reward
|
409 |
+
value: 9.16 +/- 5.76
|
410 |
+
name: Total reward
|
411 |
+
- type: expert_normalized_total_reward
|
412 |
+
value: 0.01 +/- 0.01
|
413 |
+
name: Expert normalized total reward
|
414 |
+
- type: human_normalized_total_reward
|
415 |
+
value: 0.26 +/- 0.20
|
416 |
+
name: Human normalized total reward
|
417 |
+
- task:
|
418 |
+
type: reinforcement-learning
|
419 |
+
name: Reinforcement Learning
|
420 |
+
dataset:
|
421 |
+
name: Centipede
|
422 |
+
type: atari-centipede
|
423 |
+
metrics:
|
424 |
+
- type: total_reward
|
425 |
+
value: 4461.72 +/- 2188.80
|
426 |
+
name: Total reward
|
427 |
+
- type: expert_normalized_total_reward
|
428 |
+
value: 0.25 +/- 0.23
|
429 |
+
name: Expert normalized total reward
|
430 |
+
- type: human_normalized_total_reward
|
431 |
+
value: 0.24 +/- 0.22
|
432 |
+
name: Human normalized total reward
|
433 |
+
- task:
|
434 |
+
type: reinforcement-learning
|
435 |
+
name: Reinforcement Learning
|
436 |
+
dataset:
|
437 |
+
name: Chopper Command
|
438 |
+
type: atari-choppercommand
|
439 |
+
metrics:
|
440 |
+
- type: total_reward
|
441 |
+
value: 1497.00 +/- 723.11
|
442 |
+
name: Total reward
|
443 |
+
- type: expert_normalized_total_reward
|
444 |
+
value: 0.01 +/- 0.01
|
445 |
+
name: Expert normalized total reward
|
446 |
+
- type: human_normalized_total_reward
|
447 |
+
value: 0.10 +/- 0.11
|
448 |
+
name: Human normalized total reward
|
449 |
+
- task:
|
450 |
+
type: reinforcement-learning
|
451 |
+
name: Reinforcement Learning
|
452 |
+
dataset:
|
453 |
+
name: Crazy Climber
|
454 |
+
type: atari-crazyclimber
|
455 |
+
metrics:
|
456 |
+
- type: total_reward
|
457 |
+
value: 52850.00 +/- 31617.86
|
458 |
+
name: Total reward
|
459 |
+
- type: expert_normalized_total_reward
|
460 |
+
value: 0.25 +/- 0.19
|
461 |
+
name: Expert normalized total reward
|
462 |
+
- type: human_normalized_total_reward
|
463 |
+
value: 1.68 +/- 1.26
|
464 |
+
name: Human normalized total reward
|
465 |
+
- task:
|
466 |
+
type: reinforcement-learning
|
467 |
+
name: Reinforcement Learning
|
468 |
+
dataset:
|
469 |
+
name: Defender
|
470 |
+
type: atari-defender
|
471 |
+
metrics:
|
472 |
+
- type: total_reward
|
473 |
+
value: 10627.50 +/- 4473.21
|
474 |
+
name: Total reward
|
475 |
+
- type: expert_normalized_total_reward
|
476 |
+
value: 0.02 +/- 0.01
|
477 |
+
name: Expert normalized total reward
|
478 |
+
- type: human_normalized_total_reward
|
479 |
+
value: 0.49 +/- 0.28
|
480 |
+
name: Human normalized total reward
|
481 |
+
- task:
|
482 |
+
type: reinforcement-learning
|
483 |
+
name: Reinforcement Learning
|
484 |
+
dataset:
|
485 |
+
name: Demon Attack
|
486 |
+
type: atari-demonattack
|
487 |
+
metrics:
|
488 |
+
- type: total_reward
|
489 |
+
value: 315.10 +/- 279.01
|
490 |
+
name: Total reward
|
491 |
+
- type: expert_normalized_total_reward
|
492 |
+
value: 0.00 +/- 0.00
|
493 |
+
name: Expert normalized total reward
|
494 |
+
- type: human_normalized_total_reward
|
495 |
+
value: 0.09 +/- 0.15
|
496 |
+
name: Human normalized total reward
|
497 |
+
- task:
|
498 |
+
type: reinforcement-learning
|
499 |
+
name: Reinforcement Learning
|
500 |
+
dataset:
|
501 |
+
name: Double Dunk
|
502 |
+
type: atari-doubledunk
|
503 |
+
metrics:
|
504 |
+
- type: total_reward
|
505 |
+
value: 0.08 +/- 11.61
|
506 |
+
name: Total reward
|
507 |
+
- type: expert_normalized_total_reward
|
508 |
+
value: 0.47 +/- 0.29
|
509 |
+
name: Expert normalized total reward
|
510 |
+
- type: human_normalized_total_reward
|
511 |
+
value: 0.53 +/- 0.33
|
512 |
+
name: Human normalized total reward
|
513 |
+
- task:
|
514 |
+
type: reinforcement-learning
|
515 |
+
name: Reinforcement Learning
|
516 |
+
dataset:
|
517 |
+
name: Enduro
|
518 |
+
type: atari-enduro
|
519 |
+
metrics:
|
520 |
+
- type: total_reward
|
521 |
+
value: 111.49 +/- 27.36
|
522 |
+
name: Total reward
|
523 |
+
- type: expert_normalized_total_reward
|
524 |
+
value: 0.05 +/- 0.01
|
525 |
+
name: Expert normalized total reward
|
526 |
+
- type: human_normalized_total_reward
|
527 |
+
value: 0.13 +/- 0.03
|
528 |
+
name: Human normalized total reward
|
529 |
+
- task:
|
530 |
+
type: reinforcement-learning
|
531 |
+
name: Reinforcement Learning
|
532 |
+
dataset:
|
533 |
+
name: Fishing Derby
|
534 |
+
type: atari-fishingderby
|
535 |
+
metrics:
|
536 |
+
- type: total_reward
|
537 |
+
value: -55.21 +/- 19.35
|
538 |
+
name: Total reward
|
539 |
+
- type: expert_normalized_total_reward
|
540 |
+
value: 0.37 +/- 0.20
|
541 |
+
name: Expert normalized total reward
|
542 |
+
- type: human_normalized_total_reward
|
543 |
+
value: 0.28 +/- 0.15
|
544 |
+
name: Human normalized total reward
|
545 |
+
- task:
|
546 |
+
type: reinforcement-learning
|
547 |
+
name: Reinforcement Learning
|
548 |
+
dataset:
|
549 |
+
name: Freeway
|
550 |
+
type: atari-freeway
|
551 |
+
metrics:
|
552 |
+
- type: total_reward
|
553 |
+
value: 24.12 +/- 1.64
|
554 |
+
name: Total reward
|
555 |
+
- type: expert_normalized_total_reward
|
556 |
+
value: 0.71 +/- 0.05
|
557 |
+
name: Expert normalized total reward
|
558 |
+
- type: human_normalized_total_reward
|
559 |
+
value: 0.81 +/- 0.06
|
560 |
+
name: Human normalized total reward
|
561 |
+
- task:
|
562 |
+
type: reinforcement-learning
|
563 |
+
name: Reinforcement Learning
|
564 |
+
dataset:
|
565 |
+
name: Frostbite
|
566 |
+
type: atari-frostbite
|
567 |
+
metrics:
|
568 |
+
- type: total_reward
|
569 |
+
value: 617.30 +/- 686.11
|
570 |
+
name: Total reward
|
571 |
+
- type: expert_normalized_total_reward
|
572 |
+
value: 0.04 +/- 0.05
|
573 |
+
name: Expert normalized total reward
|
574 |
+
- type: human_normalized_total_reward
|
575 |
+
value: 0.13 +/- 0.16
|
576 |
+
name: Human normalized total reward
|
577 |
+
- task:
|
578 |
+
type: reinforcement-learning
|
579 |
+
name: Reinforcement Learning
|
580 |
+
dataset:
|
581 |
+
name: Gopher
|
582 |
+
type: atari-gopher
|
583 |
+
metrics:
|
584 |
+
- type: total_reward
|
585 |
+
value: 2947.20 +/- 1448.32
|
586 |
+
name: Total reward
|
587 |
+
- type: expert_normalized_total_reward
|
588 |
+
value: 0.03 +/- 0.02
|
589 |
+
name: Expert normalized total reward
|
590 |
+
- type: human_normalized_total_reward
|
591 |
+
value: 1.25 +/- 0.67
|
592 |
+
name: Human normalized total reward
|
593 |
+
- task:
|
594 |
+
type: reinforcement-learning
|
595 |
+
name: Reinforcement Learning
|
596 |
+
dataset:
|
597 |
+
name: Gravitar
|
598 |
+
type: atari-gravitar
|
599 |
+
metrics:
|
600 |
+
- type: total_reward
|
601 |
+
value: 1030.50 +/- 719.20
|
602 |
+
name: Total reward
|
603 |
+
- type: expert_normalized_total_reward
|
604 |
+
value: 0.22 +/- 0.19
|
605 |
+
name: Expert normalized total reward
|
606 |
+
- type: human_normalized_total_reward
|
607 |
+
value: 0.27 +/- 0.23
|
608 |
+
name: Human normalized total reward
|
609 |
+
- task:
|
610 |
+
type: reinforcement-learning
|
611 |
+
name: Reinforcement Learning
|
612 |
+
dataset:
|
613 |
+
name: H.E.R.O.
|
614 |
+
type: atari-hero
|
615 |
+
metrics:
|
616 |
+
- type: total_reward
|
617 |
+
value: 6997.95 +/- 2562.51
|
618 |
+
name: Total reward
|
619 |
+
- type: expert_normalized_total_reward
|
620 |
+
value: 0.14 +/- 0.06
|
621 |
+
name: Expert normalized total reward
|
622 |
+
- type: human_normalized_total_reward
|
623 |
+
value: 0.20 +/- 0.09
|
624 |
+
name: Human normalized total reward
|
625 |
+
- task:
|
626 |
+
type: reinforcement-learning
|
627 |
+
name: Reinforcement Learning
|
628 |
+
dataset:
|
629 |
+
name: Ice Hockey
|
630 |
+
type: atari-icehockey
|
631 |
+
metrics:
|
632 |
+
- type: total_reward
|
633 |
+
value: -3.77 +/- 3.10
|
634 |
+
name: Total reward
|
635 |
+
- type: expert_normalized_total_reward
|
636 |
+
value: 0.20 +/- 0.09
|
637 |
+
name: Expert normalized total reward
|
638 |
+
- type: human_normalized_total_reward
|
639 |
+
value: 0.61 +/- 0.26
|
640 |
+
name: Human normalized total reward
|
641 |
+
- task:
|
642 |
+
type: reinforcement-learning
|
643 |
+
name: Reinforcement Learning
|
644 |
+
dataset:
|
645 |
+
name: James Bond
|
646 |
+
type: atari-jamesbond
|
647 |
+
metrics:
|
648 |
+
- type: total_reward
|
649 |
+
value: 187.50 +/- 72.24
|
650 |
+
name: Total reward
|
651 |
+
- type: expert_normalized_total_reward
|
652 |
+
value: 0.01 +/- 0.00
|
653 |
+
name: Expert normalized total reward
|
654 |
+
- type: human_normalized_total_reward
|
655 |
+
value: 0.58 +/- 0.26
|
656 |
+
name: Human normalized total reward
|
657 |
+
- task:
|
658 |
+
type: reinforcement-learning
|
659 |
+
name: Reinforcement Learning
|
660 |
+
dataset:
|
661 |
+
name: Kangaroo
|
662 |
+
type: atari-kangaroo
|
663 |
+
metrics:
|
664 |
+
- type: total_reward
|
665 |
+
value: 124.00 +/- 156.92
|
666 |
+
name: Total reward
|
667 |
+
- type: expert_normalized_total_reward
|
668 |
+
value: 0.14 +/- 0.30
|
669 |
+
name: Expert normalized total reward
|
670 |
+
- type: human_normalized_total_reward
|
671 |
+
value: 0.02 +/- 0.05
|
672 |
+
name: Human normalized total reward
|
673 |
+
- task:
|
674 |
+
type: reinforcement-learning
|
675 |
+
name: Reinforcement Learning
|
676 |
+
dataset:
|
677 |
+
name: Krull
|
678 |
+
type: atari-krull
|
679 |
+
metrics:
|
680 |
+
- type: total_reward
|
681 |
+
value: 8933.00 +/- 1358.65
|
682 |
+
name: Total reward
|
683 |
+
- type: expert_normalized_total_reward
|
684 |
+
value: 0.75 +/- 0.14
|
685 |
+
name: Expert normalized total reward
|
686 |
+
- type: human_normalized_total_reward
|
687 |
+
value: 6.87 +/- 1.27
|
688 |
+
name: Human normalized total reward
|
689 |
+
- task:
|
690 |
+
type: reinforcement-learning
|
691 |
+
name: Reinforcement Learning
|
692 |
+
dataset:
|
693 |
+
name: Kung-Fu Master
|
694 |
+
type: atari-kungfumaster
|
695 |
+
metrics:
|
696 |
+
- type: total_reward
|
697 |
+
value: 100.00 +/- 142.13
|
698 |
+
name: Total reward
|
699 |
+
- type: expert_normalized_total_reward
|
700 |
+
value: -0.00 +/- 0.00
|
701 |
+
name: Expert normalized total reward
|
702 |
+
- type: human_normalized_total_reward
|
703 |
+
value: -0.01 +/- 0.01
|
704 |
+
name: Human normalized total reward
|
705 |
+
- task:
|
706 |
+
type: reinforcement-learning
|
707 |
+
name: Reinforcement Learning
|
708 |
+
dataset:
|
709 |
+
name: Montezuma's Revenge
|
710 |
+
type: atari-montezumarevenge
|
711 |
+
metrics:
|
712 |
+
- type: total_reward
|
713 |
+
value: 0.00 +/- 0.00
|
714 |
+
name: Total reward
|
715 |
+
- type: expert_normalized_total_reward
|
716 |
+
value: 0.00 +/- 0.00
|
717 |
+
name: Expert normalized total reward
|
718 |
+
- type: human_normalized_total_reward
|
719 |
+
value: 0.00 +/- 0.00
|
720 |
+
name: Human normalized total reward
|
721 |
+
- task:
|
722 |
+
type: reinforcement-learning
|
723 |
+
name: Reinforcement Learning
|
724 |
+
dataset:
|
725 |
+
name: Ms. Pacman
|
726 |
+
type: atari-mspacman
|
727 |
+
metrics:
|
728 |
+
- type: total_reward
|
729 |
+
value: 1516.30 +/- 376.72
|
730 |
+
name: Total reward
|
731 |
+
- type: expert_normalized_total_reward
|
732 |
+
value: 0.18 +/- 0.06
|
733 |
+
name: Expert normalized total reward
|
734 |
+
- type: human_normalized_total_reward
|
735 |
+
value: 0.18 +/- 0.06
|
736 |
+
name: Human normalized total reward
|
737 |
+
- task:
|
738 |
+
type: reinforcement-learning
|
739 |
+
name: Reinforcement Learning
|
740 |
+
dataset:
|
741 |
+
name: Name This Game
|
742 |
+
type: atari-namethisgame
|
743 |
+
metrics:
|
744 |
+
- type: total_reward
|
745 |
+
value: 3798.60 +/- 1361.64
|
746 |
+
name: Total reward
|
747 |
+
- type: expert_normalized_total_reward
|
748 |
+
value: 0.07 +/- 0.07
|
749 |
+
name: Expert normalized total reward
|
750 |
+
- type: human_normalized_total_reward
|
751 |
+
value: 0.26 +/- 0.24
|
752 |
+
name: Human normalized total reward
|
753 |
+
- task:
|
754 |
+
type: reinforcement-learning
|
755 |
+
name: Reinforcement Learning
|
756 |
+
dataset:
|
757 |
+
name: Phoenix
|
758 |
+
type: atari-phoenix
|
759 |
+
metrics:
|
760 |
+
- type: total_reward
|
761 |
+
value: 1267.50 +/- 1013.72
|
762 |
+
name: Total reward
|
763 |
+
- type: expert_normalized_total_reward
|
764 |
+
value: 0.00 +/- 0.00
|
765 |
+
name: Expert normalized total reward
|
766 |
+
- type: human_normalized_total_reward
|
767 |
+
value: 0.08 +/- 0.16
|
768 |
+
name: Human normalized total reward
|
769 |
+
- task:
|
770 |
+
type: reinforcement-learning
|
771 |
+
name: Reinforcement Learning
|
772 |
+
dataset:
|
773 |
+
name: PitFall
|
774 |
+
type: atari-pitfall
|
775 |
+
metrics:
|
776 |
+
- type: total_reward
|
777 |
+
value: -287.36 +/- 492.82
|
778 |
+
name: Total reward
|
779 |
+
- type: expert_normalized_total_reward
|
780 |
+
value: -0.25 +/- 2.16
|
781 |
+
name: Expert normalized total reward
|
782 |
+
- type: human_normalized_total_reward
|
783 |
+
value: -0.01 +/- 0.07
|
784 |
+
name: Human normalized total reward
|
785 |
+
- task:
|
786 |
+
type: reinforcement-learning
|
787 |
+
name: Reinforcement Learning
|
788 |
+
dataset:
|
789 |
+
name: Pong
|
790 |
+
type: atari-pong
|
791 |
+
metrics:
|
792 |
+
- type: total_reward
|
793 |
+
value: -11.03 +/- 11.29
|
794 |
+
name: Total reward
|
795 |
+
- type: expert_normalized_total_reward
|
796 |
+
value: 0.23 +/- 0.27
|
797 |
+
name: Expert normalized total reward
|
798 |
+
- type: human_normalized_total_reward
|
799 |
+
value: 0.27 +/- 0.32
|
800 |
+
name: Human normalized total reward
|
801 |
+
- task:
|
802 |
+
type: reinforcement-learning
|
803 |
+
name: Reinforcement Learning
|
804 |
+
dataset:
|
805 |
+
name: Private Eye
|
806 |
+
type: atari-privateeye
|
807 |
+
metrics:
|
808 |
+
- type: total_reward
|
809 |
+
value: 96.00 +/- 19.60
|
810 |
+
name: Total reward
|
811 |
+
- type: expert_normalized_total_reward
|
812 |
+
value: 0.95 +/- 0.26
|
813 |
+
name: Expert normalized total reward
|
814 |
+
- type: human_normalized_total_reward
|
815 |
+
value: 0.00 +/- 0.00
|
816 |
+
name: Human normalized total reward
|
817 |
+
- task:
|
818 |
+
type: reinforcement-learning
|
819 |
+
name: Reinforcement Learning
|
820 |
+
dataset:
|
821 |
+
name: Q*Bert
|
822 |
+
type: atari-qbert
|
823 |
+
metrics:
|
824 |
+
- type: total_reward
|
825 |
+
value: 1701.75 +/- 1912.56
|
826 |
+
name: Total reward
|
827 |
+
- type: expert_normalized_total_reward
|
828 |
+
value: 0.04 +/- 0.04
|
829 |
+
name: Expert normalized total reward
|
830 |
+
- type: human_normalized_total_reward
|
831 |
+
value: 0.12 +/- 0.14
|
832 |
+
name: Human normalized total reward
|
833 |
+
- task:
|
834 |
+
type: reinforcement-learning
|
835 |
+
name: Reinforcement Learning
|
836 |
+
dataset:
|
837 |
+
name: River Raid
|
838 |
+
type: atari-riverraid
|
839 |
+
metrics:
|
840 |
+
- type: total_reward
|
841 |
+
value: 2793.10 +/- 693.84
|
842 |
+
name: Total reward
|
843 |
+
- type: expert_normalized_total_reward
|
844 |
+
value: 0.11 +/- 0.05
|
845 |
+
name: Expert normalized total reward
|
846 |
+
- type: human_normalized_total_reward
|
847 |
+
value: 0.09 +/- 0.04
|
848 |
+
name: Human normalized total reward
|
849 |
+
- task:
|
850 |
+
type: reinforcement-learning
|
851 |
+
name: Reinforcement Learning
|
852 |
+
dataset:
|
853 |
+
name: Road Runner
|
854 |
+
type: atari-roadrunner
|
855 |
+
metrics:
|
856 |
+
- type: total_reward
|
857 |
+
value: 7699.00 +/- 3446.61
|
858 |
+
name: Total reward
|
859 |
+
- type: expert_normalized_total_reward
|
860 |
+
value: 0.10 +/- 0.04
|
861 |
+
name: Expert normalized total reward
|
862 |
+
- type: human_normalized_total_reward
|
863 |
+
value: 0.98 +/- 0.44
|
864 |
+
name: Human normalized total reward
|
865 |
+
- task:
|
866 |
+
type: reinforcement-learning
|
867 |
+
name: Reinforcement Learning
|
868 |
+
dataset:
|
869 |
+
name: Robotank
|
870 |
+
type: atari-robotank
|
871 |
+
metrics:
|
872 |
+
- type: total_reward
|
873 |
+
value: 16.36 +/- 5.24
|
874 |
+
name: Total reward
|
875 |
+
- type: expert_normalized_total_reward
|
876 |
+
value: 0.18 +/- 0.07
|
877 |
+
name: Expert normalized total reward
|
878 |
+
- type: human_normalized_total_reward
|
879 |
+
value: 1.46 +/- 0.54
|
880 |
+
name: Human normalized total reward
|
881 |
+
- task:
|
882 |
+
type: reinforcement-learning
|
883 |
+
name: Reinforcement Learning
|
884 |
+
dataset:
|
885 |
+
name: Seaquest
|
886 |
+
type: atari-seaquest
|
887 |
+
metrics:
|
888 |
+
- type: total_reward
|
889 |
+
value: 515.20 +/- 141.51
|
890 |
+
name: Total reward
|
891 |
+
- type: expert_normalized_total_reward
|
892 |
+
value: 0.18 +/- 0.06
|
893 |
+
name: Expert normalized total reward
|
894 |
+
- type: human_normalized_total_reward
|
895 |
+
value: 0.01 +/- 0.00
|
896 |
+
name: Human normalized total reward
|
897 |
+
- task:
|
898 |
+
type: reinforcement-learning
|
899 |
+
name: Reinforcement Learning
|
900 |
+
dataset:
|
901 |
+
name: Skiing
|
902 |
+
type: atari-skiing
|
903 |
+
metrics:
|
904 |
+
- type: total_reward
|
905 |
+
value: -29396.08 +/- 3289.80
|
906 |
+
name: Total reward
|
907 |
+
- type: expert_normalized_total_reward
|
908 |
+
value: -1.93 +/- 0.52
|
909 |
+
name: Expert normalized total reward
|
910 |
+
- type: human_normalized_total_reward
|
911 |
+
value: -0.96 +/- 0.26
|
912 |
+
name: Human normalized total reward
|
913 |
+
- task:
|
914 |
+
type: reinforcement-learning
|
915 |
+
name: Reinforcement Learning
|
916 |
+
dataset:
|
917 |
+
name: Solaris
|
918 |
+
type: atari-solaris
|
919 |
+
metrics:
|
920 |
+
- type: total_reward
|
921 |
+
value: 988.20 +/- 487.42
|
922 |
+
name: Total reward
|
923 |
+
- type: expert_normalized_total_reward
|
924 |
+
value: -2.11 +/- 4.15
|
925 |
+
name: Expert normalized total reward
|
926 |
+
- type: human_normalized_total_reward
|
927 |
+
value: -0.02 +/- 0.04
|
928 |
+
name: Human normalized total reward
|
929 |
+
- task:
|
930 |
+
type: reinforcement-learning
|
931 |
+
name: Reinforcement Learning
|
932 |
+
dataset:
|
933 |
+
name: Space Invaders
|
934 |
+
type: atari-spaceinvaders
|
935 |
+
metrics:
|
936 |
+
- type: total_reward
|
937 |
+
value: 339.50 +/- 164.05
|
938 |
+
name: Total reward
|
939 |
+
- type: expert_normalized_total_reward
|
940 |
+
value: 0.01 +/- 0.01
|
941 |
+
name: Expert normalized total reward
|
942 |
+
- type: human_normalized_total_reward
|
943 |
+
value: 0.13 +/- 0.11
|
944 |
+
name: Human normalized total reward
|
945 |
+
- task:
|
946 |
+
type: reinforcement-learning
|
947 |
+
name: Reinforcement Learning
|
948 |
+
dataset:
|
949 |
+
name: Star Gunner
|
950 |
+
type: atari-stargunner
|
951 |
+
metrics:
|
952 |
+
- type: total_reward
|
953 |
+
value: 978.00 +/- 638.37
|
954 |
+
name: Total reward
|
955 |
+
- type: expert_normalized_total_reward
|
956 |
+
value: 0.00 +/- 0.00
|
957 |
+
name: Expert normalized total reward
|
958 |
+
- type: human_normalized_total_reward
|
959 |
+
value: 0.03 +/- 0.07
|
960 |
+
name: Human normalized total reward
|
961 |
+
- task:
|
962 |
+
type: reinforcement-learning
|
963 |
+
name: Reinforcement Learning
|
964 |
+
dataset:
|
965 |
+
name: Surround
|
966 |
+
type: atari-surround
|
967 |
+
metrics:
|
968 |
+
- type: total_reward
|
969 |
+
value: -8.22 +/- 1.19
|
970 |
+
name: Total reward
|
971 |
+
- type: expert_normalized_total_reward
|
972 |
+
value: 0.09 +/- 0.06
|
973 |
+
name: Expert normalized total reward
|
974 |
+
- type: human_normalized_total_reward
|
975 |
+
value: 0.11 +/- 0.07
|
976 |
+
name: Human normalized total reward
|
977 |
+
- task:
|
978 |
+
type: reinforcement-learning
|
979 |
+
name: Reinforcement Learning
|
980 |
+
dataset:
|
981 |
+
name: Tennis
|
982 |
+
type: atari-tennis
|
983 |
+
metrics:
|
984 |
+
- type: total_reward
|
985 |
+
value: -22.38 +/- 2.22
|
986 |
+
name: Total reward
|
987 |
+
- type: expert_normalized_total_reward
|
988 |
+
value: 0.04 +/- 0.06
|
989 |
+
name: Expert normalized total reward
|
990 |
+
- type: human_normalized_total_reward
|
991 |
+
value: 0.04 +/- 0.07
|
992 |
+
name: Human normalized total reward
|
993 |
+
- task:
|
994 |
+
type: reinforcement-learning
|
995 |
+
name: Reinforcement Learning
|
996 |
+
dataset:
|
997 |
+
name: Time Pilot
|
998 |
+
type: atari-timepilot
|
999 |
+
metrics:
|
1000 |
+
- type: total_reward
|
1001 |
+
value: 9534.00 +/- 2577.76
|
1002 |
+
name: Total reward
|
1003 |
+
- type: expert_normalized_total_reward
|
1004 |
+
value: 0.09 +/- 0.04
|
1005 |
+
name: Expert normalized total reward
|
1006 |
+
- type: human_normalized_total_reward
|
1007 |
+
value: 3.59 +/- 1.55
|
1008 |
+
name: Human normalized total reward
|
1009 |
+
- task:
|
1010 |
+
type: reinforcement-learning
|
1011 |
+
name: Reinforcement Learning
|
1012 |
+
dataset:
|
1013 |
+
name: Tutankham
|
1014 |
+
type: atari-tutankham
|
1015 |
+
metrics:
|
1016 |
+
- type: total_reward
|
1017 |
+
value: 40.20 +/- 14.51
|
1018 |
+
name: Total reward
|
1019 |
+
- type: expert_normalized_total_reward
|
1020 |
+
value: 0.10 +/- 0.05
|
1021 |
+
name: Expert normalized total reward
|
1022 |
+
- type: human_normalized_total_reward
|
1023 |
+
value: 0.18 +/- 0.09
|
1024 |
+
name: Human normalized total reward
|
1025 |
+
- task:
|
1026 |
+
type: reinforcement-learning
|
1027 |
+
name: Reinforcement Learning
|
1028 |
+
dataset:
|
1029 |
+
name: Up and Down
|
1030 |
+
type: atari-upndown
|
1031 |
+
metrics:
|
1032 |
+
- type: total_reward
|
1033 |
+
value: 6072.00 +/- 2283.30
|
1034 |
+
name: Total reward
|
1035 |
+
- type: expert_normalized_total_reward
|
1036 |
+
value: 0.01 +/- 0.01
|
1037 |
+
name: Expert normalized total reward
|
1038 |
+
- type: human_normalized_total_reward
|
1039 |
+
value: 0.50 +/- 0.20
|
1040 |
+
name: Human normalized total reward
|
1041 |
+
- task:
|
1042 |
+
type: reinforcement-learning
|
1043 |
+
name: Reinforcement Learning
|
1044 |
+
dataset:
|
1045 |
+
name: Venture
|
1046 |
+
type: atari-venture
|
1047 |
+
metrics:
|
1048 |
+
- type: total_reward
|
1049 |
+
value: 0.00 +/- 0.00
|
1050 |
+
name: Total reward
|
1051 |
+
- type: expert_normalized_total_reward
|
1052 |
+
value: 1.00 +/- 0.00
|
1053 |
+
name: Expert normalized total reward
|
1054 |
+
- type: human_normalized_total_reward
|
1055 |
+
value: 0.00 +/- 0.00
|
1056 |
+
name: Human normalized total reward
|
1057 |
+
- task:
|
1058 |
+
type: reinforcement-learning
|
1059 |
+
name: Reinforcement Learning
|
1060 |
+
dataset:
|
1061 |
+
name: Video Pinball
|
1062 |
+
type: atari-videopinball
|
1063 |
+
metrics:
|
1064 |
+
- type: total_reward
|
1065 |
+
value: 7943.01 +/- 8351.21
|
1066 |
+
name: Total reward
|
1067 |
+
- type: expert_normalized_total_reward
|
1068 |
+
value: 0.02 +/- 0.02
|
1069 |
+
name: Expert normalized total reward
|
1070 |
+
- type: human_normalized_total_reward
|
1071 |
+
value: 0.45 +/- 0.47
|
1072 |
+
name: Human normalized total reward
|
1073 |
+
- task:
|
1074 |
+
type: reinforcement-learning
|
1075 |
+
name: Reinforcement Learning
|
1076 |
+
dataset:
|
1077 |
+
name: Wizard of Wor
|
1078 |
+
type: atari-wizardofwor
|
1079 |
+
metrics:
|
1080 |
+
- type: total_reward
|
1081 |
+
value: 1306.00 +/- 1139.81
|
1082 |
+
name: Total reward
|
1083 |
+
- type: expert_normalized_total_reward
|
1084 |
+
value: 0.02 +/- 0.02
|
1085 |
+
name: Expert normalized total reward
|
1086 |
+
- type: human_normalized_total_reward
|
1087 |
+
value: 0.18 +/- 0.27
|
1088 |
+
name: Human normalized total reward
|
1089 |
+
- task:
|
1090 |
+
type: reinforcement-learning
|
1091 |
+
name: Reinforcement Learning
|
1092 |
+
dataset:
|
1093 |
+
name: Yars Revenge
|
1094 |
+
type: atari-yarsrevenge
|
1095 |
+
metrics:
|
1096 |
+
- type: total_reward
|
1097 |
+
value: 8597.41 +/- 4291.81
|
1098 |
+
name: Total reward
|
1099 |
+
- type: expert_normalized_total_reward
|
1100 |
+
value: 0.02 +/- 0.02
|
1101 |
+
name: Expert normalized total reward
|
1102 |
+
- type: human_normalized_total_reward
|
1103 |
+
value: 0.11 +/- 0.08
|
1104 |
+
name: Human normalized total reward
|
1105 |
+
- task:
|
1106 |
+
type: reinforcement-learning
|
1107 |
+
name: Reinforcement Learning
|
1108 |
+
dataset:
|
1109 |
+
name: Zaxxon
|
1110 |
+
type: atari-zaxxon
|
1111 |
+
metrics:
|
1112 |
+
- type: total_reward
|
1113 |
+
value: 896.00 +/- 1172.68
|
1114 |
+
name: Total reward
|
1115 |
+
- type: expert_normalized_total_reward
|
1116 |
+
value: 0.01 +/- 0.02
|
1117 |
+
name: Expert normalized total reward
|
1118 |
+
- type: human_normalized_total_reward
|
1119 |
+
value: 0.09 +/- 0.13
|
1120 |
+
name: Human normalized total reward
|
1121 |
+
- task:
|
1122 |
+
type: reinforcement-learning
|
1123 |
+
name: Reinforcement Learning
|
1124 |
+
dataset:
|
1125 |
+
name: Action Obj Door
|
1126 |
+
type: babyai-action-obj-door
|
1127 |
+
metrics:
|
1128 |
+
- type: total_reward
|
1129 |
+
value: 0.95 +/- 0.13
|
1130 |
+
name: Total reward
|
1131 |
+
- type: expert_normalized_total_reward
|
1132 |
+
value: 0.94 +/- 0.22
|
1133 |
+
name: Expert normalized total reward
|
1134 |
+
- task:
|
1135 |
+
type: reinforcement-learning
|
1136 |
+
name: Reinforcement Learning
|
1137 |
+
dataset:
|
1138 |
+
name: Blocked Unlock Pickup
|
1139 |
+
type: babyai-blocked-unlock-pickup
|
1140 |
+
metrics:
|
1141 |
+
- type: total_reward
|
1142 |
+
value: 0.95 +/- 0.01
|
1143 |
+
name: Total reward
|
1144 |
+
- type: expert_normalized_total_reward
|
1145 |
+
value: 1.00 +/- 0.01
|
1146 |
+
name: Expert normalized total reward
|
1147 |
+
- task:
|
1148 |
+
type: reinforcement-learning
|
1149 |
+
name: Reinforcement Learning
|
1150 |
+
dataset:
|
1151 |
+
name: Boss Level No Unlock
|
1152 |
+
type: babyai-boss-level-no-unlock
|
1153 |
+
metrics:
|
1154 |
+
- type: total_reward
|
1155 |
+
value: 0.44 +/- 0.45
|
1156 |
+
name: Total reward
|
1157 |
+
- type: expert_normalized_total_reward
|
1158 |
+
value: 0.43 +/- 0.51
|
1159 |
+
name: Expert normalized total reward
|
1160 |
+
- task:
|
1161 |
+
type: reinforcement-learning
|
1162 |
+
name: Reinforcement Learning
|
1163 |
+
dataset:
|
1164 |
+
name: Boss Level
|
1165 |
+
type: babyai-boss-level
|
1166 |
+
metrics:
|
1167 |
+
- type: total_reward
|
1168 |
+
value: 0.48 +/- 0.45
|
1169 |
+
name: Total reward
|
1170 |
+
- type: expert_normalized_total_reward
|
1171 |
+
value: 0.48 +/- 0.51
|
1172 |
+
name: Expert normalized total reward
|
1173 |
+
- task:
|
1174 |
+
type: reinforcement-learning
|
1175 |
+
name: Reinforcement Learning
|
1176 |
+
dataset:
|
1177 |
+
name: Find Obj S5
|
1178 |
+
type: babyai-find-obj-s5
|
1179 |
+
metrics:
|
1180 |
+
- type: total_reward
|
1181 |
+
value: 0.95 +/- 0.03
|
1182 |
+
name: Total reward
|
1183 |
+
- type: expert_normalized_total_reward
|
1184 |
+
value: 1.00 +/- 0.04
|
1185 |
+
name: Expert normalized total reward
|
1186 |
+
- task:
|
1187 |
+
type: reinforcement-learning
|
1188 |
+
name: Reinforcement Learning
|
1189 |
+
dataset:
|
1190 |
+
name: Go To Door
|
1191 |
+
type: babyai-go-to-door
|
1192 |
+
metrics:
|
1193 |
+
- type: total_reward
|
1194 |
+
value: 0.99 +/- 0.01
|
1195 |
+
name: Total reward
|
1196 |
+
- type: expert_normalized_total_reward
|
1197 |
+
value: 1.00 +/- 0.01
|
1198 |
+
name: Expert normalized total reward
|
1199 |
+
- task:
|
1200 |
+
type: reinforcement-learning
|
1201 |
+
name: Reinforcement Learning
|
1202 |
+
dataset:
|
1203 |
+
name: Go To Imp Unlock
|
1204 |
+
type: babyai-go-to-imp-unlock
|
1205 |
+
metrics:
|
1206 |
+
- type: total_reward
|
1207 |
+
value: 0.50 +/- 0.44
|
1208 |
+
name: Total reward
|
1209 |
+
- type: expert_normalized_total_reward
|
1210 |
+
value: 0.56 +/- 0.59
|
1211 |
+
name: Expert normalized total reward
|
1212 |
+
- task:
|
1213 |
+
type: reinforcement-learning
|
1214 |
+
name: Reinforcement Learning
|
1215 |
+
dataset:
|
1216 |
+
name: Go To Local
|
1217 |
+
type: babyai-go-to-local
|
1218 |
+
metrics:
|
1219 |
+
- type: total_reward
|
1220 |
+
value: 0.88 +/- 0.14
|
1221 |
+
name: Total reward
|
1222 |
+
- type: expert_normalized_total_reward
|
1223 |
+
value: 0.94 +/- 0.18
|
1224 |
+
name: Expert normalized total reward
|
1225 |
+
- task:
|
1226 |
+
type: reinforcement-learning
|
1227 |
+
name: Reinforcement Learning
|
1228 |
+
dataset:
|
1229 |
+
name: Go To Obj Door
|
1230 |
+
type: babyai-go-to-obj-door
|
1231 |
+
metrics:
|
1232 |
+
- type: total_reward
|
1233 |
+
value: 0.98 +/- 0.04
|
1234 |
+
name: Total reward
|
1235 |
+
- type: expert_normalized_total_reward
|
1236 |
+
value: 0.97 +/- 0.08
|
1237 |
+
name: Expert normalized total reward
|
1238 |
+
- task:
|
1239 |
+
type: reinforcement-learning
|
1240 |
+
name: Reinforcement Learning
|
1241 |
+
dataset:
|
1242 |
+
name: Go To Obj
|
1243 |
+
type: babyai-go-to-obj
|
1244 |
+
metrics:
|
1245 |
+
- type: total_reward
|
1246 |
+
value: 0.93 +/- 0.04
|
1247 |
+
name: Total reward
|
1248 |
+
- type: expert_normalized_total_reward
|
1249 |
+
value: 0.99 +/- 0.05
|
1250 |
+
name: Expert normalized total reward
|
1251 |
+
- task:
|
1252 |
+
type: reinforcement-learning
|
1253 |
+
name: Reinforcement Learning
|
1254 |
+
dataset:
|
1255 |
+
name: Go To Red Ball Grey
|
1256 |
+
type: babyai-go-to-red-ball-grey
|
1257 |
+
metrics:
|
1258 |
+
- type: total_reward
|
1259 |
+
value: 0.91 +/- 0.06
|
1260 |
+
name: Total reward
|
1261 |
+
- type: expert_normalized_total_reward
|
1262 |
+
value: 0.99 +/- 0.08
|
1263 |
+
name: Expert normalized total reward
|
1264 |
+
- task:
|
1265 |
+
type: reinforcement-learning
|
1266 |
+
name: Reinforcement Learning
|
1267 |
+
dataset:
|
1268 |
+
name: Go To Red Ball No Dists
|
1269 |
+
type: babyai-go-to-red-ball-no-dists
|
1270 |
+
metrics:
|
1271 |
+
- type: total_reward
|
1272 |
+
value: 0.93 +/- 0.03
|
1273 |
+
name: Total reward
|
1274 |
+
- type: expert_normalized_total_reward
|
1275 |
+
value: 1.00 +/- 0.04
|
1276 |
+
name: Expert normalized total reward
|
1277 |
+
- task:
|
1278 |
+
type: reinforcement-learning
|
1279 |
+
name: Reinforcement Learning
|
1280 |
+
dataset:
|
1281 |
+
name: Go To Red Ball
|
1282 |
+
type: babyai-go-to-red-ball
|
1283 |
+
metrics:
|
1284 |
+
- type: total_reward
|
1285 |
+
value: 0.91 +/- 0.08
|
1286 |
+
name: Total reward
|
1287 |
+
- type: expert_normalized_total_reward
|
1288 |
+
value: 0.98 +/- 0.11
|
1289 |
+
name: Expert normalized total reward
|
1290 |
+
- task:
|
1291 |
+
type: reinforcement-learning
|
1292 |
+
name: Reinforcement Learning
|
1293 |
+
dataset:
|
1294 |
+
name: Go To Red Blue Ball
|
1295 |
+
type: babyai-go-to-red-blue-ball
|
1296 |
+
metrics:
|
1297 |
+
- type: total_reward
|
1298 |
+
value: 0.88 +/- 0.11
|
1299 |
+
name: Total reward
|
1300 |
+
- type: expert_normalized_total_reward
|
1301 |
+
value: 0.96 +/- 0.13
|
1302 |
+
name: Expert normalized total reward
|
1303 |
+
- task:
|
1304 |
+
type: reinforcement-learning
|
1305 |
+
name: Reinforcement Learning
|
1306 |
+
dataset:
|
1307 |
+
name: Go To Seq
|
1308 |
+
type: babyai-go-to-seq
|
1309 |
+
metrics:
|
1310 |
+
- type: total_reward
|
1311 |
+
value: 0.73 +/- 0.34
|
1312 |
+
name: Total reward
|
1313 |
+
- type: expert_normalized_total_reward
|
1314 |
+
value: 0.75 +/- 0.40
|
1315 |
+
name: Expert normalized total reward
|
1316 |
+
- task:
|
1317 |
+
type: reinforcement-learning
|
1318 |
+
name: Reinforcement Learning
|
1319 |
+
dataset:
|
1320 |
+
name: Go To
|
1321 |
+
type: babyai-go-to
|
1322 |
+
metrics:
|
1323 |
+
- type: total_reward
|
1324 |
+
value: 0.80 +/- 0.27
|
1325 |
+
name: Total reward
|
1326 |
+
- type: expert_normalized_total_reward
|
1327 |
+
value: 0.85 +/- 0.35
|
1328 |
+
name: Expert normalized total reward
|
1329 |
+
- task:
|
1330 |
+
type: reinforcement-learning
|
1331 |
+
name: Reinforcement Learning
|
1332 |
+
dataset:
|
1333 |
+
name: Key Corridor
|
1334 |
+
type: babyai-key-corridor
|
1335 |
+
metrics:
|
1336 |
+
- type: total_reward
|
1337 |
+
value: 0.88 +/- 0.10
|
1338 |
+
name: Total reward
|
1339 |
+
- type: expert_normalized_total_reward
|
1340 |
+
value: 0.97 +/- 0.11
|
1341 |
+
name: Expert normalized total reward
|
1342 |
+
- task:
|
1343 |
+
type: reinforcement-learning
|
1344 |
+
name: Reinforcement Learning
|
1345 |
+
dataset:
|
1346 |
+
name: Mini Boss Level
|
1347 |
+
type: babyai-mini-boss-level
|
1348 |
+
metrics:
|
1349 |
+
- type: total_reward
|
1350 |
+
value: 0.69 +/- 0.35
|
1351 |
+
name: Total reward
|
1352 |
+
- type: expert_normalized_total_reward
|
1353 |
+
value: 0.76 +/- 0.43
|
1354 |
+
name: Expert normalized total reward
|
1355 |
+
- task:
|
1356 |
+
type: reinforcement-learning
|
1357 |
+
name: Reinforcement Learning
|
1358 |
+
dataset:
|
1359 |
+
name: Move Two Across S8N9
|
1360 |
+
type: babyai-move-two-across-s8n9
|
1361 |
+
metrics:
|
1362 |
+
- type: total_reward
|
1363 |
+
value: 0.03 +/- 0.15
|
1364 |
+
name: Total reward
|
1365 |
+
- type: expert_normalized_total_reward
|
1366 |
+
value: 0.03 +/- 0.16
|
1367 |
+
name: Expert normalized total reward
|
1368 |
+
- task:
|
1369 |
+
type: reinforcement-learning
|
1370 |
+
name: Reinforcement Learning
|
1371 |
+
dataset:
|
1372 |
+
name: One Room S8
|
1373 |
+
type: babyai-one-room-s8
|
1374 |
+
metrics:
|
1375 |
+
- type: total_reward
|
1376 |
+
value: 0.92 +/- 0.03
|
1377 |
+
name: Total reward
|
1378 |
+
- type: expert_normalized_total_reward
|
1379 |
+
value: 1.00 +/- 0.04
|
1380 |
+
name: Expert normalized total reward
|
1381 |
+
- task:
|
1382 |
+
type: reinforcement-learning
|
1383 |
+
name: Reinforcement Learning
|
1384 |
+
dataset:
|
1385 |
+
name: Open Door
|
1386 |
+
type: babyai-open-door
|
1387 |
+
metrics:
|
1388 |
+
- type: total_reward
|
1389 |
+
value: 0.99 +/- 0.00
|
1390 |
+
name: Total reward
|
1391 |
+
- type: expert_normalized_total_reward
|
1392 |
+
value: 1.00 +/- 0.01
|
1393 |
+
name: Expert normalized total reward
|
1394 |
+
- task:
|
1395 |
+
type: reinforcement-learning
|
1396 |
+
name: Reinforcement Learning
|
1397 |
+
dataset:
|
1398 |
+
name: Open Doors Order N4
|
1399 |
+
type: babyai-open-doors-order-n4
|
1400 |
+
metrics:
|
1401 |
+
- type: total_reward
|
1402 |
+
value: 0.96 +/- 0.11
|
1403 |
+
name: Total reward
|
1404 |
+
- type: expert_normalized_total_reward
|
1405 |
+
value: 0.97 +/- 0.13
|
1406 |
+
name: Expert normalized total reward
|
1407 |
+
- task:
|
1408 |
+
type: reinforcement-learning
|
1409 |
+
name: Reinforcement Learning
|
1410 |
+
dataset:
|
1411 |
+
name: Open Red Door
|
1412 |
+
type: babyai-open-red-door
|
1413 |
+
metrics:
|
1414 |
+
- type: total_reward
|
1415 |
+
value: 0.92 +/- 0.02
|
1416 |
+
name: Total reward
|
1417 |
+
- type: expert_normalized_total_reward
|
1418 |
+
value: 1.00 +/- 0.03
|
1419 |
+
name: Expert normalized total reward
|
1420 |
+
- task:
|
1421 |
+
type: reinforcement-learning
|
1422 |
+
name: Reinforcement Learning
|
1423 |
+
dataset:
|
1424 |
+
name: Open Two Doors
|
1425 |
+
type: babyai-open-two-doors
|
1426 |
+
metrics:
|
1427 |
+
- type: total_reward
|
1428 |
+
value: 0.98 +/- 0.00
|
1429 |
+
name: Total reward
|
1430 |
+
- type: expert_normalized_total_reward
|
1431 |
+
value: 1.00 +/- 0.00
|
1432 |
+
name: Expert normalized total reward
|
1433 |
+
- task:
|
1434 |
+
type: reinforcement-learning
|
1435 |
+
name: Reinforcement Learning
|
1436 |
+
dataset:
|
1437 |
+
name: Open
|
1438 |
+
type: babyai-open
|
1439 |
+
metrics:
|
1440 |
+
- type: total_reward
|
1441 |
+
value: 0.93 +/- 0.11
|
1442 |
+
name: Total reward
|
1443 |
+
- type: expert_normalized_total_reward
|
1444 |
+
value: 0.97 +/- 0.13
|
1445 |
+
name: Expert normalized total reward
|
1446 |
+
- task:
|
1447 |
+
type: reinforcement-learning
|
1448 |
+
name: Reinforcement Learning
|
1449 |
+
dataset:
|
1450 |
+
name: Pickup Above
|
1451 |
+
type: babyai-pickup-above
|
1452 |
+
metrics:
|
1453 |
+
- type: total_reward
|
1454 |
+
value: 0.92 +/- 0.06
|
1455 |
+
name: Total reward
|
1456 |
+
- type: expert_normalized_total_reward
|
1457 |
+
value: 1.01 +/- 0.07
|
1458 |
+
name: Expert normalized total reward
|
1459 |
+
- task:
|
1460 |
+
type: reinforcement-learning
|
1461 |
+
name: Reinforcement Learning
|
1462 |
+
dataset:
|
1463 |
+
name: Pickup Dist
|
1464 |
+
type: babyai-pickup-dist
|
1465 |
+
metrics:
|
1466 |
+
- type: total_reward
|
1467 |
+
value: 0.88 +/- 0.13
|
1468 |
+
name: Total reward
|
1469 |
+
- type: expert_normalized_total_reward
|
1470 |
+
value: 1.03 +/- 0.18
|
1471 |
+
name: Expert normalized total reward
|
1472 |
+
- task:
|
1473 |
+
type: reinforcement-learning
|
1474 |
+
name: Reinforcement Learning
|
1475 |
+
dataset:
|
1476 |
+
name: Pickup Loc
|
1477 |
+
type: babyai-pickup-loc
|
1478 |
+
metrics:
|
1479 |
+
- type: total_reward
|
1480 |
+
value: 0.84 +/- 0.20
|
1481 |
+
name: Total reward
|
1482 |
+
- type: expert_normalized_total_reward
|
1483 |
+
value: 0.91 +/- 0.24
|
1484 |
+
name: Expert normalized total reward
|
1485 |
+
- task:
|
1486 |
+
type: reinforcement-learning
|
1487 |
+
name: Reinforcement Learning
|
1488 |
+
dataset:
|
1489 |
+
name: Pickup
|
1490 |
+
type: babyai-pickup
|
1491 |
+
metrics:
|
1492 |
+
- type: total_reward
|
1493 |
+
value: 0.72 +/- 0.34
|
1494 |
+
name: Total reward
|
1495 |
+
- type: expert_normalized_total_reward
|
1496 |
+
value: 0.77 +/- 0.40
|
1497 |
+
name: Expert normalized total reward
|
1498 |
+
- task:
|
1499 |
+
type: reinforcement-learning
|
1500 |
+
name: Reinforcement Learning
|
1501 |
+
dataset:
|
1502 |
+
name: Put Next Local
|
1503 |
+
type: babyai-put-next-local
|
1504 |
+
metrics:
|
1505 |
+
- type: total_reward
|
1506 |
+
value: 0.60 +/- 0.36
|
1507 |
+
name: Total reward
|
1508 |
+
- type: expert_normalized_total_reward
|
1509 |
+
value: 0.65 +/- 0.39
|
1510 |
+
name: Expert normalized total reward
|
1511 |
+
- task:
|
1512 |
+
type: reinforcement-learning
|
1513 |
+
name: Reinforcement Learning
|
1514 |
+
dataset:
|
1515 |
+
name: Put Next S7N4
|
1516 |
+
type: babyai-put-next
|
1517 |
+
metrics:
|
1518 |
+
- type: total_reward
|
1519 |
+
value: 0.82 +/- 0.26
|
1520 |
+
name: Total reward
|
1521 |
+
- type: expert_normalized_total_reward
|
1522 |
+
value: 0.86 +/- 0.27
|
1523 |
+
name: Expert normalized total reward
|
1524 |
+
- task:
|
1525 |
+
type: reinforcement-learning
|
1526 |
+
name: Reinforcement Learning
|
1527 |
+
dataset:
|
1528 |
+
name: Synth Loc
|
1529 |
+
type: babyai-synth-loc
|
1530 |
+
metrics:
|
1531 |
+
- type: total_reward
|
1532 |
+
value: 0.82 +/- 0.31
|
1533 |
+
name: Total reward
|
1534 |
+
- type: expert_normalized_total_reward
|
1535 |
+
value: 0.85 +/- 0.38
|
1536 |
+
name: Expert normalized total reward
|
1537 |
+
- task:
|
1538 |
+
type: reinforcement-learning
|
1539 |
+
name: Reinforcement Learning
|
1540 |
+
dataset:
|
1541 |
+
name: Synth Seq
|
1542 |
+
type: babyai-synth-seq
|
1543 |
+
metrics:
|
1544 |
+
- type: total_reward
|
1545 |
+
value: 0.57 +/- 0.44
|
1546 |
+
name: Total reward
|
1547 |
+
- type: expert_normalized_total_reward
|
1548 |
+
value: 0.57 +/- 0.50
|
1549 |
+
name: Expert normalized total reward
|
1550 |
+
- task:
|
1551 |
+
type: reinforcement-learning
|
1552 |
+
name: Reinforcement Learning
|
1553 |
+
dataset:
|
1554 |
+
name: Synth
|
1555 |
+
type: babyai-synth
|
1556 |
+
metrics:
|
1557 |
+
- type: total_reward
|
1558 |
+
value: 0.68 +/- 0.39
|
1559 |
+
name: Total reward
|
1560 |
+
- type: expert_normalized_total_reward
|
1561 |
+
value: 0.69 +/- 0.47
|
1562 |
+
name: Expert normalized total reward
|
1563 |
+
- task:
|
1564 |
+
type: reinforcement-learning
|
1565 |
+
name: Reinforcement Learning
|
1566 |
+
dataset:
|
1567 |
+
name: Unblock Pickup
|
1568 |
+
type: babyai-unblock-pickup
|
1569 |
+
metrics:
|
1570 |
+
- type: total_reward
|
1571 |
+
value: 0.76 +/- 0.33
|
1572 |
+
name: Total reward
|
1573 |
+
- type: expert_normalized_total_reward
|
1574 |
+
value: 0.82 +/- 0.39
|
1575 |
+
name: Expert normalized total reward
|
1576 |
+
- task:
|
1577 |
+
type: reinforcement-learning
|
1578 |
+
name: Reinforcement Learning
|
1579 |
+
dataset:
|
1580 |
+
name: Unlock Local
|
1581 |
+
type: babyai-unlock-local
|
1582 |
+
metrics:
|
1583 |
+
- type: total_reward
|
1584 |
+
value: 0.98 +/- 0.01
|
1585 |
+
name: Total reward
|
1586 |
+
- type: expert_normalized_total_reward
|
1587 |
+
value: 1.00 +/- 0.01
|
1588 |
+
name: Expert normalized total reward
|
1589 |
+
- task:
|
1590 |
+
type: reinforcement-learning
|
1591 |
+
name: Reinforcement Learning
|
1592 |
+
dataset:
|
1593 |
+
name: Unlock Pickup
|
1594 |
+
type: babyai-unlock-pickup
|
1595 |
+
metrics:
|
1596 |
+
- type: total_reward
|
1597 |
+
value: 0.76 +/- 0.03
|
1598 |
+
name: Total reward
|
1599 |
+
- type: expert_normalized_total_reward
|
1600 |
+
value: 1.01 +/- 0.04
|
1601 |
+
name: Expert normalized total reward
|
1602 |
+
- task:
|
1603 |
+
type: reinforcement-learning
|
1604 |
+
name: Reinforcement Learning
|
1605 |
+
dataset:
|
1606 |
+
name: Unlock To Unlock
|
1607 |
+
type: babyai-unlock-to-unlock
|
1608 |
+
metrics:
|
1609 |
+
- type: total_reward
|
1610 |
+
value: 0.86 +/- 0.29
|
1611 |
+
name: Total reward
|
1612 |
+
- type: expert_normalized_total_reward
|
1613 |
+
value: 0.89 +/- 0.30
|
1614 |
+
name: Expert normalized total reward
|
1615 |
+
- task:
|
1616 |
+
type: reinforcement-learning
|
1617 |
+
name: Reinforcement Learning
|
1618 |
+
dataset:
|
1619 |
+
name: Unlock
|
1620 |
+
type: babyai-unlock
|
1621 |
+
metrics:
|
1622 |
+
- type: total_reward
|
1623 |
+
value: 0.55 +/- 0.42
|
1624 |
+
name: Total reward
|
1625 |
+
- type: expert_normalized_total_reward
|
1626 |
+
value: 0.63 +/- 0.50
|
1627 |
+
name: Expert normalized total reward
|
1628 |
+
- task:
|
1629 |
+
type: reinforcement-learning
|
1630 |
+
name: Reinforcement Learning
|
1631 |
+
dataset:
|
1632 |
+
name: Assembly
|
1633 |
+
type: metaworld-assembly
|
1634 |
+
metrics:
|
1635 |
+
- type: total_reward
|
1636 |
+
value: 238.32 +/- 32.98
|
1637 |
+
name: Total reward
|
1638 |
+
- type: expert_normalized_total_reward
|
1639 |
+
value: 0.96 +/- 0.16
|
1640 |
+
name: Expert normalized total reward
|
1641 |
+
- task:
|
1642 |
+
type: reinforcement-learning
|
1643 |
+
name: Reinforcement Learning
|
1644 |
+
dataset:
|
1645 |
+
name: Basketball
|
1646 |
+
type: metaworld-basketball
|
1647 |
+
metrics:
|
1648 |
+
- type: total_reward
|
1649 |
+
value: 1.59 +/- 0.43
|
1650 |
+
name: Total reward
|
1651 |
+
- type: expert_normalized_total_reward
|
1652 |
+
value: -0.00 +/- 0.00
|
1653 |
+
name: Expert normalized total reward
|
1654 |
+
- task:
|
1655 |
+
type: reinforcement-learning
|
1656 |
+
name: Reinforcement Learning
|
1657 |
+
dataset:
|
1658 |
+
name: BinPicking
|
1659 |
+
type: metaworld-bin-picking
|
1660 |
+
metrics:
|
1661 |
+
- type: total_reward
|
1662 |
+
value: 374.18 +/- 168.23
|
1663 |
+
name: Total reward
|
1664 |
+
- type: expert_normalized_total_reward
|
1665 |
+
value: 0.88 +/- 0.40
|
1666 |
+
name: Expert normalized total reward
|
1667 |
+
- task:
|
1668 |
+
type: reinforcement-learning
|
1669 |
+
name: Reinforcement Learning
|
1670 |
+
dataset:
|
1671 |
+
name: Box Close
|
1672 |
+
type: metaworld-box-close
|
1673 |
+
metrics:
|
1674 |
+
- type: total_reward
|
1675 |
+
value: 510.10 +/- 117.47
|
1676 |
+
name: Total reward
|
1677 |
+
- type: expert_normalized_total_reward
|
1678 |
+
value: 0.99 +/- 0.27
|
1679 |
+
name: Expert normalized total reward
|
1680 |
+
- task:
|
1681 |
+
type: reinforcement-learning
|
1682 |
+
name: Reinforcement Learning
|
1683 |
+
dataset:
|
1684 |
+
name: Button Press Topdown Wall
|
1685 |
+
type: metaworld-button-press-topdown-wall
|
1686 |
+
metrics:
|
1687 |
+
- type: total_reward
|
1688 |
+
value: 260.07 +/- 67.75
|
1689 |
+
name: Total reward
|
1690 |
+
- type: expert_normalized_total_reward
|
1691 |
+
value: 0.49 +/- 0.14
|
1692 |
+
name: Expert normalized total reward
|
1693 |
+
- task:
|
1694 |
+
type: reinforcement-learning
|
1695 |
+
name: Reinforcement Learning
|
1696 |
+
dataset:
|
1697 |
+
name: Button Press Topdown
|
1698 |
+
type: metaworld-button-press-topdown
|
1699 |
+
metrics:
|
1700 |
+
- type: total_reward
|
1701 |
+
value: 265.16 +/- 77.93
|
1702 |
+
name: Total reward
|
1703 |
+
- type: expert_normalized_total_reward
|
1704 |
+
value: 0.51 +/- 0.17
|
1705 |
+
name: Expert normalized total reward
|
1706 |
+
- task:
|
1707 |
+
type: reinforcement-learning
|
1708 |
+
name: Reinforcement Learning
|
1709 |
+
dataset:
|
1710 |
+
name: Button Press Wall
|
1711 |
+
type: metaworld-button-press-wall
|
1712 |
+
metrics:
|
1713 |
+
- type: total_reward
|
1714 |
+
value: 621.75 +/- 137.13
|
1715 |
+
name: Total reward
|
1716 |
+
- type: expert_normalized_total_reward
|
1717 |
+
value: 0.92 +/- 0.21
|
1718 |
+
name: Expert normalized total reward
|
1719 |
+
- task:
|
1720 |
+
type: reinforcement-learning
|
1721 |
+
name: Reinforcement Learning
|
1722 |
+
dataset:
|
1723 |
+
name: Button Press
|
1724 |
+
type: metaworld-button-press
|
1725 |
+
metrics:
|
1726 |
+
- type: total_reward
|
1727 |
+
value: 556.75 +/- 198.85
|
1728 |
+
name: Total reward
|
1729 |
+
- type: expert_normalized_total_reward
|
1730 |
+
value: 0.86 +/- 0.33
|
1731 |
+
name: Expert normalized total reward
|
1732 |
+
- task:
|
1733 |
+
type: reinforcement-learning
|
1734 |
+
name: Reinforcement Learning
|
1735 |
+
dataset:
|
1736 |
+
name: Coffee Button
|
1737 |
+
type: metaworld-coffee-button
|
1738 |
+
metrics:
|
1739 |
+
- type: total_reward
|
1740 |
+
value: 250.50 +/- 266.92
|
1741 |
+
name: Total reward
|
1742 |
+
- type: expert_normalized_total_reward
|
1743 |
+
value: 0.31 +/- 0.38
|
1744 |
+
name: Expert normalized total reward
|
1745 |
+
- task:
|
1746 |
+
type: reinforcement-learning
|
1747 |
+
name: Reinforcement Learning
|
1748 |
+
dataset:
|
1749 |
+
name: Coffee Pull
|
1750 |
+
type: metaworld-coffee-pull
|
1751 |
+
metrics:
|
1752 |
+
- type: total_reward
|
1753 |
+
value: 55.13 +/- 96.96
|
1754 |
+
name: Total reward
|
1755 |
+
- type: expert_normalized_total_reward
|
1756 |
+
value: 0.20 +/- 0.38
|
1757 |
+
name: Expert normalized total reward
|
1758 |
+
- task:
|
1759 |
+
type: reinforcement-learning
|
1760 |
+
name: Reinforcement Learning
|
1761 |
+
dataset:
|
1762 |
+
name: Coffee Push
|
1763 |
+
type: metaworld-coffee-push
|
1764 |
+
metrics:
|
1765 |
+
- type: total_reward
|
1766 |
+
value: 269.17 +/- 237.82
|
1767 |
+
name: Total reward
|
1768 |
+
- type: expert_normalized_total_reward
|
1769 |
+
value: 0.54 +/- 0.48
|
1770 |
+
name: Expert normalized total reward
|
1771 |
+
- task:
|
1772 |
+
type: reinforcement-learning
|
1773 |
+
name: Reinforcement Learning
|
1774 |
+
dataset:
|
1775 |
+
name: Dial Turn
|
1776 |
+
type: metaworld-dial-turn
|
1777 |
+
metrics:
|
1778 |
+
- type: total_reward
|
1779 |
+
value: 738.22 +/- 168.43
|
1780 |
+
name: Total reward
|
1781 |
+
- type: expert_normalized_total_reward
|
1782 |
+
value: 0.93 +/- 0.22
|
1783 |
+
name: Expert normalized total reward
|
1784 |
+
- task:
|
1785 |
+
type: reinforcement-learning
|
1786 |
+
name: Reinforcement Learning
|
1787 |
+
dataset:
|
1788 |
+
name: Disassemble
|
1789 |
+
type: metaworld-disassemble
|
1790 |
+
metrics:
|
1791 |
+
- type: total_reward
|
1792 |
+
value: 39.14 +/- 11.85
|
1793 |
+
name: Total reward
|
1794 |
+
- type: expert_normalized_total_reward
|
1795 |
+
value: -0.47 +/- 4.70
|
1796 |
+
name: Expert normalized total reward
|
1797 |
+
- task:
|
1798 |
+
type: reinforcement-learning
|
1799 |
+
name: Reinforcement Learning
|
1800 |
+
dataset:
|
1801 |
+
name: Door Close
|
1802 |
+
type: metaworld-door-close
|
1803 |
+
metrics:
|
1804 |
+
- type: total_reward
|
1805 |
+
value: 528.17 +/- 29.90
|
1806 |
+
name: Total reward
|
1807 |
+
- type: expert_normalized_total_reward
|
1808 |
+
value: 1.00 +/- 0.06
|
1809 |
+
name: Expert normalized total reward
|
1810 |
+
- task:
|
1811 |
+
type: reinforcement-learning
|
1812 |
+
name: Reinforcement Learning
|
1813 |
+
dataset:
|
1814 |
+
name: Door Lock
|
1815 |
+
type: metaworld-door-lock
|
1816 |
+
metrics:
|
1817 |
+
- type: total_reward
|
1818 |
+
value: 676.51 +/- 192.68
|
1819 |
+
name: Total reward
|
1820 |
+
- type: expert_normalized_total_reward
|
1821 |
+
value: 0.81 +/- 0.28
|
1822 |
+
name: Expert normalized total reward
|
1823 |
+
- task:
|
1824 |
+
type: reinforcement-learning
|
1825 |
+
name: Reinforcement Learning
|
1826 |
+
dataset:
|
1827 |
+
name: Door Open
|
1828 |
+
type: metaworld-door-open
|
1829 |
+
metrics:
|
1830 |
+
- type: total_reward
|
1831 |
+
value: 572.76 +/- 57.53
|
1832 |
+
name: Total reward
|
1833 |
+
- type: expert_normalized_total_reward
|
1834 |
+
value: 0.98 +/- 0.11
|
1835 |
+
name: Expert normalized total reward
|
1836 |
+
- task:
|
1837 |
+
type: reinforcement-learning
|
1838 |
+
name: Reinforcement Learning
|
1839 |
+
dataset:
|
1840 |
+
name: Door Unlock
|
1841 |
+
type: metaworld-door-unlock
|
1842 |
+
metrics:
|
1843 |
+
- type: total_reward
|
1844 |
+
value: 654.94 +/- 260.64
|
1845 |
+
name: Total reward
|
1846 |
+
- type: expert_normalized_total_reward
|
1847 |
+
value: 0.79 +/- 0.37
|
1848 |
+
name: Expert normalized total reward
|
1849 |
+
- task:
|
1850 |
+
type: reinforcement-learning
|
1851 |
+
name: Reinforcement Learning
|
1852 |
+
dataset:
|
1853 |
+
name: Drawer Close
|
1854 |
+
type: metaworld-drawer-close
|
1855 |
+
metrics:
|
1856 |
+
- type: total_reward
|
1857 |
+
value: 663.02 +/- 214.51
|
1858 |
+
name: Total reward
|
1859 |
+
- type: expert_normalized_total_reward
|
1860 |
+
value: 0.73 +/- 0.29
|
1861 |
+
name: Expert normalized total reward
|
1862 |
+
- task:
|
1863 |
+
type: reinforcement-learning
|
1864 |
+
name: Reinforcement Learning
|
1865 |
+
dataset:
|
1866 |
+
name: Drawer Open
|
1867 |
+
type: metaworld-drawer-open
|
1868 |
+
metrics:
|
1869 |
+
- type: total_reward
|
1870 |
+
value: 489.07 +/- 21.28
|
1871 |
+
name: Total reward
|
1872 |
+
- type: expert_normalized_total_reward
|
1873 |
+
value: 0.99 +/- 0.06
|
1874 |
+
name: Expert normalized total reward
|
1875 |
+
- task:
|
1876 |
+
type: reinforcement-learning
|
1877 |
+
name: Reinforcement Learning
|
1878 |
+
dataset:
|
1879 |
+
name: Faucet Close
|
1880 |
+
type: metaworld-faucet-close
|
1881 |
+
metrics:
|
1882 |
+
- type: total_reward
|
1883 |
+
value: 361.32 +/- 72.28
|
1884 |
+
name: Total reward
|
1885 |
+
- type: expert_normalized_total_reward
|
1886 |
+
value: 0.22 +/- 0.14
|
1887 |
+
name: Expert normalized total reward
|
1888 |
+
- task:
|
1889 |
+
type: reinforcement-learning
|
1890 |
+
name: Reinforcement Learning
|
1891 |
+
dataset:
|
1892 |
+
name: Faucet Open
|
1893 |
+
type: metaworld-faucet-open
|
1894 |
+
metrics:
|
1895 |
+
- type: total_reward
|
1896 |
+
value: 637.86 +/- 134.50
|
1897 |
+
name: Total reward
|
1898 |
+
- type: expert_normalized_total_reward
|
1899 |
+
value: 0.85 +/- 0.29
|
1900 |
+
name: Expert normalized total reward
|
1901 |
+
- task:
|
1902 |
+
type: reinforcement-learning
|
1903 |
+
name: Reinforcement Learning
|
1904 |
+
dataset:
|
1905 |
+
name: Hammer
|
1906 |
+
type: metaworld-hammer
|
1907 |
+
metrics:
|
1908 |
+
- type: total_reward
|
1909 |
+
value: 691.72 +/- 25.25
|
1910 |
+
name: Total reward
|
1911 |
+
- type: expert_normalized_total_reward
|
1912 |
+
value: 1.00 +/- 0.04
|
1913 |
+
name: Expert normalized total reward
|
1914 |
+
- task:
|
1915 |
+
type: reinforcement-learning
|
1916 |
+
name: Reinforcement Learning
|
1917 |
+
dataset:
|
1918 |
+
name: Hand Insert
|
1919 |
+
type: metaworld-hand-insert
|
1920 |
+
metrics:
|
1921 |
+
- type: total_reward
|
1922 |
+
value: 719.57 +/- 99.26
|
1923 |
+
name: Total reward
|
1924 |
+
- type: expert_normalized_total_reward
|
1925 |
+
value: 0.97 +/- 0.13
|
1926 |
+
name: Expert normalized total reward
|
1927 |
+
- task:
|
1928 |
+
type: reinforcement-learning
|
1929 |
+
name: Reinforcement Learning
|
1930 |
+
dataset:
|
1931 |
+
name: Handle Press Side
|
1932 |
+
type: metaworld-handle-press-side
|
1933 |
+
metrics:
|
1934 |
+
- type: total_reward
|
1935 |
+
value: 84.25 +/- 113.34
|
1936 |
+
name: Total reward
|
1937 |
+
- type: expert_normalized_total_reward
|
1938 |
+
value: 0.03 +/- 0.14
|
1939 |
+
name: Expert normalized total reward
|
1940 |
+
- task:
|
1941 |
+
type: reinforcement-learning
|
1942 |
+
name: Reinforcement Learning
|
1943 |
+
dataset:
|
1944 |
+
name: Handle Press
|
1945 |
+
type: metaworld-handle-press
|
1946 |
+
metrics:
|
1947 |
+
- type: total_reward
|
1948 |
+
value: 731.94 +/- 261.90
|
1949 |
+
name: Total reward
|
1950 |
+
- type: expert_normalized_total_reward
|
1951 |
+
value: 0.84 +/- 0.34
|
1952 |
+
name: Expert normalized total reward
|
1953 |
+
- task:
|
1954 |
+
type: reinforcement-learning
|
1955 |
+
name: Reinforcement Learning
|
1956 |
+
dataset:
|
1957 |
+
name: Handle Pull Side
|
1958 |
+
type: metaworld-handle-pull-side
|
1959 |
+
metrics:
|
1960 |
+
- type: total_reward
|
1961 |
+
value: 233.11 +/- 199.49
|
1962 |
+
name: Total reward
|
1963 |
+
- type: expert_normalized_total_reward
|
1964 |
+
value: 0.60 +/- 0.52
|
1965 |
+
name: Expert normalized total reward
|
1966 |
+
- task:
|
1967 |
+
type: reinforcement-learning
|
1968 |
+
name: Reinforcement Learning
|
1969 |
+
dataset:
|
1970 |
+
name: Handle Pull
|
1971 |
+
type: metaworld-handle-pull
|
1972 |
+
metrics:
|
1973 |
+
- type: total_reward
|
1974 |
+
value: 501.29 +/- 209.45
|
1975 |
+
name: Total reward
|
1976 |
+
- type: expert_normalized_total_reward
|
1977 |
+
value: 0.74 +/- 0.32
|
1978 |
+
name: Expert normalized total reward
|
1979 |
+
- task:
|
1980 |
+
type: reinforcement-learning
|
1981 |
+
name: Reinforcement Learning
|
1982 |
+
dataset:
|
1983 |
+
name: Lever Pull
|
1984 |
+
type: metaworld-lever-pull
|
1985 |
+
metrics:
|
1986 |
+
- type: total_reward
|
1987 |
+
value: 250.18 +/- 228.59
|
1988 |
+
name: Total reward
|
1989 |
+
- type: expert_normalized_total_reward
|
1990 |
+
value: 0.34 +/- 0.41
|
1991 |
+
name: Expert normalized total reward
|
1992 |
+
- task:
|
1993 |
+
type: reinforcement-learning
|
1994 |
+
name: Reinforcement Learning
|
1995 |
+
dataset:
|
1996 |
+
name: Peg Insert Side
|
1997 |
+
type: metaworld-peg-insert-side
|
1998 |
+
metrics:
|
1999 |
+
- type: total_reward
|
2000 |
+
value: 288.02 +/- 157.87
|
2001 |
+
name: Total reward
|
2002 |
+
- type: expert_normalized_total_reward
|
2003 |
+
value: 0.91 +/- 0.50
|
2004 |
+
name: Expert normalized total reward
|
2005 |
+
- task:
|
2006 |
+
type: reinforcement-learning
|
2007 |
+
name: Reinforcement Learning
|
2008 |
+
dataset:
|
2009 |
+
name: Peg Unplug Side
|
2010 |
+
type: metaworld-peg-unplug-side
|
2011 |
+
metrics:
|
2012 |
+
- type: total_reward
|
2013 |
+
value: 68.48 +/- 125.34
|
2014 |
+
name: Total reward
|
2015 |
+
- type: expert_normalized_total_reward
|
2016 |
+
value: 0.14 +/- 0.28
|
2017 |
+
name: Expert normalized total reward
|
2018 |
+
- task:
|
2019 |
+
type: reinforcement-learning
|
2020 |
+
name: Reinforcement Learning
|
2021 |
+
dataset:
|
2022 |
+
name: Pick Out Of Hole
|
2023 |
+
type: metaworld-pick-out-of-hole
|
2024 |
+
metrics:
|
2025 |
+
- type: total_reward
|
2026 |
+
value: 2.08 +/- 0.05
|
2027 |
+
name: Total reward
|
2028 |
+
- type: expert_normalized_total_reward
|
2029 |
+
value: 0.00 +/- 0.00
|
2030 |
+
name: Expert normalized total reward
|
2031 |
+
- task:
|
2032 |
+
type: reinforcement-learning
|
2033 |
+
name: Reinforcement Learning
|
2034 |
+
dataset:
|
2035 |
+
name: Pick Place Wall
|
2036 |
+
type: metaworld-pick-place-wall
|
2037 |
+
metrics:
|
2038 |
+
- type: total_reward
|
2039 |
+
value: 6.87 +/- 44.99
|
2040 |
+
name: Total reward
|
2041 |
+
- type: expert_normalized_total_reward
|
2042 |
+
value: 0.02 +/- 0.10
|
2043 |
+
name: Expert normalized total reward
|
2044 |
+
- task:
|
2045 |
+
type: reinforcement-learning
|
2046 |
+
name: Reinforcement Learning
|
2047 |
+
dataset:
|
2048 |
+
name: Pick Place
|
2049 |
+
type: metaworld-pick-place
|
2050 |
+
metrics:
|
2051 |
+
- type: total_reward
|
2052 |
+
value: 264.18 +/- 195.69
|
2053 |
+
name: Total reward
|
2054 |
+
- type: expert_normalized_total_reward
|
2055 |
+
value: 0.63 +/- 0.47
|
2056 |
+
name: Expert normalized total reward
|
2057 |
+
- task:
|
2058 |
+
type: reinforcement-learning
|
2059 |
+
name: Reinforcement Learning
|
2060 |
+
dataset:
|
2061 |
+
name: Plate Slide Back Side
|
2062 |
+
type: metaworld-plate-slide-back-side
|
2063 |
+
metrics:
|
2064 |
+
- type: total_reward
|
2065 |
+
value: 697.54 +/- 137.79
|
2066 |
+
name: Total reward
|
2067 |
+
- type: expert_normalized_total_reward
|
2068 |
+
value: 0.95 +/- 0.20
|
2069 |
+
name: Expert normalized total reward
|
2070 |
+
- task:
|
2071 |
+
type: reinforcement-learning
|
2072 |
+
name: Reinforcement Learning
|
2073 |
+
dataset:
|
2074 |
+
name: Plate Slide Back
|
2075 |
+
type: metaworld-plate-slide-back
|
2076 |
+
metrics:
|
2077 |
+
- type: total_reward
|
2078 |
+
value: 196.80 +/- 1.73
|
2079 |
+
name: Total reward
|
2080 |
+
- type: expert_normalized_total_reward
|
2081 |
+
value: 0.24 +/- 0.00
|
2082 |
+
name: Expert normalized total reward
|
2083 |
+
- task:
|
2084 |
+
type: reinforcement-learning
|
2085 |
+
name: Reinforcement Learning
|
2086 |
+
dataset:
|
2087 |
+
name: Plate Slide Side
|
2088 |
+
type: metaworld-plate-slide-side
|
2089 |
+
metrics:
|
2090 |
+
- type: total_reward
|
2091 |
+
value: 122.61 +/- 24.52
|
2092 |
+
name: Total reward
|
2093 |
+
- type: expert_normalized_total_reward
|
2094 |
+
value: 0.16 +/- 0.04
|
2095 |
+
name: Expert normalized total reward
|
2096 |
+
- task:
|
2097 |
+
type: reinforcement-learning
|
2098 |
+
name: Reinforcement Learning
|
2099 |
+
dataset:
|
2100 |
+
name: Plate Slide
|
2101 |
+
type: metaworld-plate-slide
|
2102 |
+
metrics:
|
2103 |
+
- type: total_reward
|
2104 |
+
value: 497.42 +/- 168.74
|
2105 |
+
name: Total reward
|
2106 |
+
- type: expert_normalized_total_reward
|
2107 |
+
value: 0.93 +/- 0.37
|
2108 |
+
name: Expert normalized total reward
|
2109 |
+
- task:
|
2110 |
+
type: reinforcement-learning
|
2111 |
+
name: Reinforcement Learning
|
2112 |
+
dataset:
|
2113 |
+
name: Push Back
|
2114 |
+
type: metaworld-push-back
|
2115 |
+
metrics:
|
2116 |
+
- type: total_reward
|
2117 |
+
value: 91.41 +/- 115.05
|
2118 |
+
name: Total reward
|
2119 |
+
- type: expert_normalized_total_reward
|
2120 |
+
value: 1.08 +/- 1.37
|
2121 |
+
name: Expert normalized total reward
|
2122 |
+
- task:
|
2123 |
+
type: reinforcement-learning
|
2124 |
+
name: Reinforcement Learning
|
2125 |
+
dataset:
|
2126 |
+
name: Push Wall
|
2127 |
+
type: metaworld-push-wall
|
2128 |
+
metrics:
|
2129 |
+
- type: total_reward
|
2130 |
+
value: 116.49 +/- 208.05
|
2131 |
+
name: Total reward
|
2132 |
+
- type: expert_normalized_total_reward
|
2133 |
+
value: 0.15 +/- 0.28
|
2134 |
+
name: Expert normalized total reward
|
2135 |
+
- task:
|
2136 |
+
type: reinforcement-learning
|
2137 |
+
name: Reinforcement Learning
|
2138 |
+
dataset:
|
2139 |
+
name: Push
|
2140 |
+
type: metaworld-push
|
2141 |
+
metrics:
|
2142 |
+
- type: total_reward
|
2143 |
+
value: 604.25 +/- 261.90
|
2144 |
+
name: Total reward
|
2145 |
+
- type: expert_normalized_total_reward
|
2146 |
+
value: 0.80 +/- 0.35
|
2147 |
+
name: Expert normalized total reward
|
2148 |
+
- task:
|
2149 |
+
type: reinforcement-learning
|
2150 |
+
name: Reinforcement Learning
|
2151 |
+
dataset:
|
2152 |
+
name: Reach Wall
|
2153 |
+
type: metaworld-reach-wall
|
2154 |
+
metrics:
|
2155 |
+
- type: total_reward
|
2156 |
+
value: 634.57 +/- 231.40
|
2157 |
+
name: Total reward
|
2158 |
+
- type: expert_normalized_total_reward
|
2159 |
+
value: 0.81 +/- 0.38
|
2160 |
+
name: Expert normalized total reward
|
2161 |
+
- task:
|
2162 |
+
type: reinforcement-learning
|
2163 |
+
name: Reinforcement Learning
|
2164 |
+
dataset:
|
2165 |
+
name: Reach
|
2166 |
+
type: metaworld-reach
|
2167 |
+
metrics:
|
2168 |
+
- type: total_reward
|
2169 |
+
value: 325.27 +/- 159.21
|
2170 |
+
name: Total reward
|
2171 |
+
- type: expert_normalized_total_reward
|
2172 |
+
value: 0.33 +/- 0.30
|
2173 |
+
name: Expert normalized total reward
|
2174 |
+
- task:
|
2175 |
+
type: reinforcement-learning
|
2176 |
+
name: Reinforcement Learning
|
2177 |
+
dataset:
|
2178 |
+
name: Shelf Place
|
2179 |
+
type: metaworld-shelf-place
|
2180 |
+
metrics:
|
2181 |
+
- type: total_reward
|
2182 |
+
value: 124.60 +/- 112.83
|
2183 |
+
name: Total reward
|
2184 |
+
- type: expert_normalized_total_reward
|
2185 |
+
value: 0.52 +/- 0.47
|
2186 |
+
name: Expert normalized total reward
|
2187 |
+
- task:
|
2188 |
+
type: reinforcement-learning
|
2189 |
+
name: Reinforcement Learning
|
2190 |
+
dataset:
|
2191 |
+
name: Soccer
|
2192 |
+
type: metaworld-soccer
|
2193 |
+
metrics:
|
2194 |
+
- type: total_reward
|
2195 |
+
value: 364.50 +/- 175.45
|
2196 |
+
name: Total reward
|
2197 |
+
- type: expert_normalized_total_reward
|
2198 |
+
value: 0.97 +/- 0.47
|
2199 |
+
name: Expert normalized total reward
|
2200 |
+
- task:
|
2201 |
+
type: reinforcement-learning
|
2202 |
+
name: Reinforcement Learning
|
2203 |
+
dataset:
|
2204 |
+
name: Stick Pull
|
2205 |
+
type: metaworld-stick-pull
|
2206 |
+
metrics:
|
2207 |
+
- type: total_reward
|
2208 |
+
value: 398.64 +/- 205.60
|
2209 |
+
name: Total reward
|
2210 |
+
- type: expert_normalized_total_reward
|
2211 |
+
value: 0.76 +/- 0.39
|
2212 |
+
name: Expert normalized total reward
|
2213 |
+
- task:
|
2214 |
+
type: reinforcement-learning
|
2215 |
+
name: Reinforcement Learning
|
2216 |
+
dataset:
|
2217 |
+
name: Stick Push
|
2218 |
+
type: metaworld-stick-push
|
2219 |
+
metrics:
|
2220 |
+
- type: total_reward
|
2221 |
+
value: 158.29 +/- 264.59
|
2222 |
+
name: Total reward
|
2223 |
+
- type: expert_normalized_total_reward
|
2224 |
+
value: 0.25 +/- 0.42
|
2225 |
+
name: Expert normalized total reward
|
2226 |
+
- task:
|
2227 |
+
type: reinforcement-learning
|
2228 |
+
name: Reinforcement Learning
|
2229 |
+
dataset:
|
2230 |
+
name: Sweep Into
|
2231 |
+
type: metaworld-sweep-into
|
2232 |
+
metrics:
|
2233 |
+
- type: total_reward
|
2234 |
+
value: 775.30 +/- 119.00
|
2235 |
+
name: Total reward
|
2236 |
+
- type: expert_normalized_total_reward
|
2237 |
+
value: 0.97 +/- 0.15
|
2238 |
+
name: Expert normalized total reward
|
2239 |
+
- task:
|
2240 |
+
type: reinforcement-learning
|
2241 |
+
name: Reinforcement Learning
|
2242 |
+
dataset:
|
2243 |
+
name: Sweep
|
2244 |
+
type: metaworld-sweep
|
2245 |
+
metrics:
|
2246 |
+
- type: total_reward
|
2247 |
+
value: 15.64 +/- 9.29
|
2248 |
+
name: Total reward
|
2249 |
+
- type: expert_normalized_total_reward
|
2250 |
+
value: 0.01 +/- 0.02
|
2251 |
+
name: Expert normalized total reward
|
2252 |
+
- task:
|
2253 |
+
type: reinforcement-learning
|
2254 |
+
name: Reinforcement Learning
|
2255 |
+
dataset:
|
2256 |
+
name: Window Close
|
2257 |
+
type: metaworld-window-close
|
2258 |
+
metrics:
|
2259 |
+
- type: total_reward
|
2260 |
+
value: 423.33 +/- 203.92
|
2261 |
+
name: Total reward
|
2262 |
+
- type: expert_normalized_total_reward
|
2263 |
+
value: 0.69 +/- 0.38
|
2264 |
+
name: Expert normalized total reward
|
2265 |
+
- task:
|
2266 |
+
type: reinforcement-learning
|
2267 |
+
name: Reinforcement Learning
|
2268 |
+
dataset:
|
2269 |
+
name: Window Open
|
2270 |
+
type: metaworld-window-open
|
2271 |
+
metrics:
|
2272 |
+
- type: total_reward
|
2273 |
+
value: 593.10 +/- 54.83
|
2274 |
+
name: Total reward
|
2275 |
+
- type: expert_normalized_total_reward
|
2276 |
+
value: 1.00 +/- 0.10
|
2277 |
+
name: Expert normalized total reward
|
2278 |
+
- task:
|
2279 |
+
type: reinforcement-learning
|
2280 |
+
name: Reinforcement Learning
|
2281 |
+
dataset:
|
2282 |
+
name: Ant
|
2283 |
+
type: mujoco-ant
|
2284 |
+
metrics:
|
2285 |
+
- type: total_reward
|
2286 |
+
value: 5268.02 +/- 1495.39
|
2287 |
+
name: Total reward
|
2288 |
+
- type: expert_normalized_total_reward
|
2289 |
+
value: 0.90 +/- 0.25
|
2290 |
+
name: Expert normalized total reward
|
2291 |
+
- task:
|
2292 |
+
type: reinforcement-learning
|
2293 |
+
name: Reinforcement Learning
|
2294 |
+
dataset:
|
2295 |
+
name: Inverted Double Pendulum
|
2296 |
+
type: mujoco-doublependulum
|
2297 |
+
metrics:
|
2298 |
+
- type: total_reward
|
2299 |
+
value: 4750.14 +/- 931.20
|
2300 |
+
name: Total reward
|
2301 |
+
- type: expert_normalized_total_reward
|
2302 |
+
value: 0.51 +/- 0.10
|
2303 |
+
name: Expert normalized total reward
|
2304 |
+
- task:
|
2305 |
+
type: reinforcement-learning
|
2306 |
+
name: Reinforcement Learning
|
2307 |
+
dataset:
|
2308 |
+
name: Half Cheetah
|
2309 |
+
type: mujoco-halfcheetah
|
2310 |
+
metrics:
|
2311 |
+
- type: total_reward
|
2312 |
+
value: 6659.69 +/- 409.71
|
2313 |
+
name: Total reward
|
2314 |
+
- type: expert_normalized_total_reward
|
2315 |
+
value: 0.90 +/- 0.05
|
2316 |
+
name: Expert normalized total reward
|
2317 |
+
- task:
|
2318 |
+
type: reinforcement-learning
|
2319 |
+
name: Reinforcement Learning
|
2320 |
+
dataset:
|
2321 |
+
name: Hopper
|
2322 |
+
type: mujoco-hopper
|
2323 |
+
metrics:
|
2324 |
+
- type: total_reward
|
2325 |
+
value: 1835.93 +/- 532.21
|
2326 |
+
name: Total reward
|
2327 |
+
- type: expert_normalized_total_reward
|
2328 |
+
value: 0.99 +/- 0.29
|
2329 |
+
name: Expert normalized total reward
|
2330 |
+
- task:
|
2331 |
+
type: reinforcement-learning
|
2332 |
+
name: Reinforcement Learning
|
2333 |
+
dataset:
|
2334 |
+
name: Humanoid
|
2335 |
+
type: mujoco-humanoid
|
2336 |
+
metrics:
|
2337 |
+
- type: total_reward
|
2338 |
+
value: 697.44 +/- 108.06
|
2339 |
+
name: Total reward
|
2340 |
+
- type: expert_normalized_total_reward
|
2341 |
+
value: 0.09 +/- 0.02
|
2342 |
+
name: Expert normalized total reward
|
2343 |
+
- task:
|
2344 |
+
type: reinforcement-learning
|
2345 |
+
name: Reinforcement Learning
|
2346 |
+
dataset:
|
2347 |
+
name: Inverted Pendulum
|
2348 |
+
type: mujoco-pendulum
|
2349 |
+
metrics:
|
2350 |
+
- type: total_reward
|
2351 |
+
value: 116.34 +/- 20.19
|
2352 |
+
name: Total reward
|
2353 |
+
- type: expert_normalized_total_reward
|
2354 |
+
value: 0.23 +/- 0.04
|
2355 |
+
name: Expert normalized total reward
|
2356 |
+
- task:
|
2357 |
+
type: reinforcement-learning
|
2358 |
+
name: Reinforcement Learning
|
2359 |
+
dataset:
|
2360 |
+
name: Pusher
|
2361 |
+
type: mujoco-pusher
|
2362 |
+
metrics:
|
2363 |
+
- type: total_reward
|
2364 |
+
value: -26.33 +/- 6.32
|
2365 |
+
name: Total reward
|
2366 |
+
- type: expert_normalized_total_reward
|
2367 |
+
value: 0.99 +/- 0.05
|
2368 |
+
name: Expert normalized total reward
|
2369 |
+
- task:
|
2370 |
+
type: reinforcement-learning
|
2371 |
+
name: Reinforcement Learning
|
2372 |
+
dataset:
|
2373 |
+
name: Reacher
|
2374 |
+
type: mujoco-reacher
|
2375 |
+
metrics:
|
2376 |
+
- type: total_reward
|
2377 |
+
value: -6.06 +/- 2.64
|
2378 |
+
name: Total reward
|
2379 |
+
- type: expert_normalized_total_reward
|
2380 |
+
value: 0.99 +/- 0.07
|
2381 |
+
name: Expert normalized total reward
|
2382 |
+
- task:
|
2383 |
+
type: reinforcement-learning
|
2384 |
+
name: Reinforcement Learning
|
2385 |
+
dataset:
|
2386 |
+
name: Humanoid Standup
|
2387 |
+
type: mujoco-standup
|
2388 |
+
metrics:
|
2389 |
+
- type: total_reward
|
2390 |
+
value: 118125.15 +/- 24880.28
|
2391 |
+
name: Total reward
|
2392 |
+
- type: expert_normalized_total_reward
|
2393 |
+
value: 0.35 +/- 0.10
|
2394 |
+
name: Expert normalized total reward
|
2395 |
+
- task:
|
2396 |
+
type: reinforcement-learning
|
2397 |
+
name: Reinforcement Learning
|
2398 |
+
dataset:
|
2399 |
+
name: Swimmer
|
2400 |
+
type: mujoco-swimmer
|
2401 |
+
metrics:
|
2402 |
+
- type: total_reward
|
2403 |
+
value: 93.26 +/- 3.78
|
2404 |
+
name: Total reward
|
2405 |
+
- type: expert_normalized_total_reward
|
2406 |
+
value: 1.01 +/- 0.04
|
2407 |
+
name: Expert normalized total reward
|
2408 |
+
- task:
|
2409 |
+
type: reinforcement-learning
|
2410 |
+
name: Reinforcement Learning
|
2411 |
+
dataset:
|
2412 |
+
name: Walker 2d
|
2413 |
+
type: mujoco-walker
|
2414 |
+
metrics:
|
2415 |
+
- type: total_reward
|
2416 |
+
value: 4662.43 +/- 762.67
|
2417 |
+
name: Total reward
|
2418 |
+
- type: expert_normalized_total_reward
|
2419 |
+
value: 1.01 +/- 0.16
|
2420 |
+
name: Expert normalized total reward
|
2421 |
+
---
|
2422 |
+
|
2423 |
+
# Model Card for Jat
|
2424 |
+
|
2425 |
+
This is a multi-modal and multi-task model.
|
2426 |
+
|
2427 |
+
## Model Details
|
2428 |
+
|
2429 |
+
### Model Description
|
2430 |
+
|
2431 |
+
- **Developed by:** The JAT Team
|
2432 |
+
- **License:** Apache 2.0
|
2433 |
+
|
2434 |
+
### Model Sources
|
2435 |
+
|
2436 |
+
- **Repository:** <https://github.com/huggingface/jat>
|
2437 |
+
- **Paper:** Coming soon
|
2438 |
+
- **Demo:** Coming soon
|
2439 |
+
|
2440 |
+
## Training
|
2441 |
+
|
2442 |
+
The model was trained on the following tasks:
|
2443 |
+
|
2444 |
+
- Alien
|
2445 |
+
- Amidar
|
2446 |
+
- Assault
|
2447 |
+
- Asterix
|
2448 |
+
- Asteroids
|
2449 |
+
- Atlantis
|
2450 |
+
- Bank Heist
|
2451 |
+
- Battle Zone
|
2452 |
+
- Beam Rider
|
2453 |
+
- Berzerk
|
2454 |
+
- Bowling
|
2455 |
+
- Boxing
|
2456 |
+
- Breakout
|
2457 |
+
- Centipede
|
2458 |
+
- Chopper Command
|
2459 |
+
- Crazy Climber
|
2460 |
+
- Defender
|
2461 |
+
- Demon Attack
|
2462 |
+
- Double Dunk
|
2463 |
+
- Enduro
|
2464 |
+
- Fishing Derby
|
2465 |
+
- Freeway
|
2466 |
+
- Frostbite
|
2467 |
+
- Gopher
|
2468 |
+
- Gravitar
|
2469 |
+
- H.E.R.O.
|
2470 |
+
- Ice Hockey
|
2471 |
+
- James Bond
|
2472 |
+
- Kangaroo
|
2473 |
+
- Krull
|
2474 |
+
- Kung-Fu Master
|
2475 |
+
- Montezuma's Revenge
|
2476 |
+
- Ms. Pacman
|
2477 |
+
- Name This Game
|
2478 |
+
- Phoenix
|
2479 |
+
- PitFall
|
2480 |
+
- Pong
|
2481 |
+
- Private Eye
|
2482 |
+
- Q*Bert
|
2483 |
+
- River Raid
|
2484 |
+
- Road Runner
|
2485 |
+
- Robotank
|
2486 |
+
- Seaquest
|
2487 |
+
- Skiing
|
2488 |
+
- Solaris
|
2489 |
+
- Space Invaders
|
2490 |
+
- Star Gunner
|
2491 |
+
- Surround
|
2492 |
+
- Tennis
|
2493 |
+
- Time Pilot
|
2494 |
+
- Tutankham
|
2495 |
+
- Up and Down
|
2496 |
+
- Venture
|
2497 |
+
- Video Pinball
|
2498 |
+
- Wizard of Wor
|
2499 |
+
- Yars Revenge
|
2500 |
+
- Zaxxon
|
2501 |
+
- Action Obj Door
|
2502 |
+
- Blocked Unlock Pickup
|
2503 |
+
- Boss Level No Unlock
|
2504 |
+
- Boss Level
|
2505 |
+
- Find Obj S5
|
2506 |
+
- Go To Door
|
2507 |
+
- Go To Imp Unlock
|
2508 |
+
- Go To Local
|
2509 |
+
- Go To Obj Door
|
2510 |
+
- Go To Obj
|
2511 |
+
- Go To Red Ball Grey
|
2512 |
+
- Go To Red Ball No Dists
|
2513 |
+
- Go To Red Ball
|
2514 |
+
- Go To Red Blue Ball
|
2515 |
+
- Go To Seq
|
2516 |
+
- Go To
|
2517 |
+
- Key Corridor
|
2518 |
+
- Mini Boss Level
|
2519 |
+
- Move Two Across S8N9
|
2520 |
+
- One Room S8
|
2521 |
+
- Open Door
|
2522 |
+
- Open Doors Order N4
|
2523 |
+
- Open Red Door
|
2524 |
+
- Open Two Doors
|
2525 |
+
- Open
|
2526 |
+
- Pickup Above
|
2527 |
+
- Pickup Dist
|
2528 |
+
- Pickup Loc
|
2529 |
+
- Pickup
|
2530 |
+
- Put Next Local
|
2531 |
+
- Put Next S7N4
|
2532 |
+
- Synth Loc
|
2533 |
+
- Synth Seq
|
2534 |
+
- Synth
|
2535 |
+
- Unblock Pickup
|
2536 |
+
- Unlock Local
|
2537 |
+
- Unlock Pickup
|
2538 |
+
- Unlock To Unlock
|
2539 |
+
- Unlock
|
2540 |
+
- Assembly
|
2541 |
+
- Basketball
|
2542 |
+
- BinPicking
|
2543 |
+
- Box Close
|
2544 |
+
- Button Press Topdown Wall
|
2545 |
+
- Button Press Topdown
|
2546 |
+
- Button Press Wall
|
2547 |
+
- Button Press
|
2548 |
+
- Coffee Button
|
2549 |
+
- Coffee Pull
|
2550 |
+
- Coffee Push
|
2551 |
+
- Dial Turn
|
2552 |
+
- Disassemble
|
2553 |
+
- Door Close
|
2554 |
+
- Door Lock
|
2555 |
+
- Door Open
|
2556 |
+
- Door Unlock
|
2557 |
+
- Drawer Close
|
2558 |
+
- Drawer Open
|
2559 |
+
- Faucet Close
|
2560 |
+
- Faucet Open
|
2561 |
+
- Hammer
|
2562 |
+
- Hand Insert
|
2563 |
+
- Handle Press Side
|
2564 |
+
- Handle Press
|
2565 |
+
- Handle Pull Side
|
2566 |
+
- Handle Pull
|
2567 |
+
- Lever Pull
|
2568 |
+
- Peg Insert Side
|
2569 |
+
- Peg Unplug Side
|
2570 |
+
- Pick Out Of Hole
|
2571 |
+
- Pick Place Wall
|
2572 |
+
- Pick Place
|
2573 |
+
- Plate Slide Back Side
|
2574 |
+
- Plate Slide Back
|
2575 |
+
- Plate Slide Side
|
2576 |
+
- Plate Slide
|
2577 |
+
- Push Back
|
2578 |
+
- Push Wall
|
2579 |
+
- Push
|
2580 |
+
- Reach Wall
|
2581 |
+
- Reach
|
2582 |
+
- Shelf Place
|
2583 |
+
- Soccer
|
2584 |
+
- Stick Pull
|
2585 |
+
- Stick Push
|
2586 |
+
- Sweep Into
|
2587 |
+
- Sweep
|
2588 |
+
- Window Close
|
2589 |
+
- Window Open
|
2590 |
+
- Ant
|
2591 |
+
- Inverted Double Pendulum
|
2592 |
+
- Half Cheetah
|
2593 |
+
- Hopper
|
2594 |
+
- Humanoid
|
2595 |
+
- Inverted Pendulum
|
2596 |
+
- Pusher
|
2597 |
+
- Reacher
|
2598 |
+
- Humanoid Standup
|
2599 |
+
- Swimmer
|
2600 |
+
- Walker 2d
|
2601 |
+
|
2602 |
+
## How to Get Started with the Model
|
2603 |
+
|
2604 |
+
Use the code below to get started with the model.
|
2605 |
+
|
2606 |
+
```python
|
2607 |
+
from transformers import AutoModelForCausalLM
|
2608 |
+
|
2609 |
+
model = AutoModelForCausalLM.from_pretrained("jat-project/jat")
|
2610 |
+
```
|