--- tags: - transformers - xlm-roberta library_name: transformers license: cc-by-nc-4.0 language: - multilingual - af - am - ar - as - az - be - bg - bn - br - bs - ca - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - 'no' - om - or - pa - pl - ps - pt - ro - ru - sa - sd - si - sk - sl - so - sq - sr - su - sv - sw - ta - te - th - tl - tr - ug - uk - ur - uz - vi - xh - yi - zh --- Core implementation of Jina XLM-RoBERTa This implementation is adapted from [XLM-Roberta](https://huggingface.co/docs/transformers/en/model_doc/xlm-roberta). In contrast to the original implementation, this model uses Rotary positional encodings and supports flash-attention 2. ### Models that use this implementation - [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) - [jinaai/jina-colbert-v2](https://huggingface.co/jinaai/jina-colbert-v2) ### Converting weights Weights from an [original XLMRoberta model](https://huggingface.co/FacebookAI/xlm-roberta-large) can be converted using the `convert_roberta_weights_to_flash.py` script in the model repository.