--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-cased_conll2003-sm-all-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9487479131886477 - name: Recall type: recall value: 0.9564119824974756 - name: F1 type: f1 value: 0.9525645323499833 - name: Accuracy type: accuracy value: 0.9916085822203186 --- # bert-base-cased_conll2003-sm-all-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0489 - Precision: 0.9487 - Recall: 0.9564 - F1: 0.9526 - Accuracy: 0.9916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.052 | 1.0 | 3511 | 0.0510 | 0.9374 | 0.9456 | 0.9415 | 0.9898 | | 0.0213 | 2.0 | 7022 | 0.0497 | 0.9484 | 0.9519 | 0.9501 | 0.9911 | | 0.0099 | 3.0 | 10533 | 0.0489 | 0.9487 | 0.9564 | 0.9526 | 0.9916 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1