jpopham91 commited on
Commit
ef64dcf
·
1 Parent(s): 591caab

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.26 +/- 0.47
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4896f7d47efc5bfaecdcf9e7c8ec348c82ba6b1666d1ed90d4993256edf16d5
3
+ size 108095
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f848167d3a0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f8481676930>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674003424456559867,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAxo/dPjIhYTzV9Q8/xo/dPjIhYTzV9Q8/xo/dPjIhYTzV9Q8/xo/dPjIhYTzV9Q8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXZnwvkcqZT8xCrK/EZyAPxKmzr/OO9A/300lv1fjrz+Bib0/O6+LPuYCTz8/ACy+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADGj90+MiFhPNX1Dz/6GmQ7J66RutmebbnGj90+MiFhPNX1Dz/6GmQ7J66RutmebbnGj90+MiFhPNX1Dz/6GmQ7J66RutmebbnGj90+MiFhPNX1Dz/6GmQ7J66RutmebbmUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.43273753 0.01374082 0.56234485]\n [0.43273753 0.01374082 0.56234485]\n [0.43273753 0.01374082 0.56234485]\n [0.43273753 0.01374082 0.56234485]]",
60
+ "desired_goal": "[[-0.46992007 0.89517635 -1.390936 ]\n [ 1.0047628 -1.6144431 1.6268251 ]\n [-0.64571947 1.3741254 1.4807588 ]\n [ 0.27282128 0.808638 -0.16796969]]",
61
+ "observation": "[[ 4.3273753e-01 1.3740825e-02 5.6234485e-01 3.4806118e-03\n -1.1114524e-03 -2.2661257e-04]\n [ 4.3273753e-01 1.3740825e-02 5.6234485e-01 3.4806118e-03\n -1.1114524e-03 -2.2661257e-04]\n [ 4.3273753e-01 1.3740825e-02 5.6234485e-01 3.4806118e-03\n -1.1114524e-03 -2.2661257e-04]\n [ 4.3273753e-01 1.3740825e-02 5.6234485e-01 3.4806118e-03\n -1.1114524e-03 -2.2661257e-04]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYroMvnZvGT48N0Y+gYKTvRwMhjzaoF0+h+MLPrLbyb0heJI+rpR4vXDbar27goU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.13742974 0.14983925 0.19357008]\n [-0.07202626 0.0163632 0.21643391]\n [ 0.13661014 -0.09856357 0.28607276]\n [-0.06068867 -0.05733818 0.26076302]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+s+aH39p/L+UhpRSlIwBbJRLMowBdJRHQKR2JCWNWEN1fZQoaAZoCWgPQwhWKT3TSwwQwJSGlFKUaBVLMmgWR0CkdeNDD0lJdX2UKGgGaAloD0MIar3faMdtB8CUhpRSlGgVSzJoFkdApHWjPIGQjnV9lChoBmgJaA9DCJPGaB1VDQbAlIaUUpRoFUsyaBZHQKR1XlZowmF1fZQoaAZoCWgPQwichxOYTmsDwJSGlFKUaBVLMmgWR0CkdwIzeoDQdX2UKGgGaAloD0MI1xUzwtuDB8CUhpRSlGgVSzJoFkdApHbBbY9PlHV9lChoBmgJaA9DCAMmcOtuXgHAlIaUUpRoFUsyaBZHQKR2gXtShrZ1fZQoaAZoCWgPQwimDBzQ0pX+v5SGlFKUaBVLMmgWR0Ckdjyc9W6tdX2UKGgGaAloD0MIwePbuwZdBMCUhpRSlGgVSzJoFkdApHfoVVPva3V9lChoBmgJaA9DCEkRGVbxhgPAlIaUUpRoFUsyaBZHQKR3p6v7m+11fZQoaAZoCWgPQwghsd09QDf/v5SGlFKUaBVLMmgWR0Ckd2e10DEFdX2UKGgGaAloD0MIT8x6MZSTCsCUhpRSlGgVSzJoFkdApHcjMcIZ63V9lChoBmgJaA9DCLiwbrw7cgTAlIaUUpRoFUsyaBZHQKR4z+Kjzqd1fZQoaAZoCWgPQwiiJ2VSQ9sEwJSGlFKUaBVLMmgWR0CkeI8G9pRGdX2UKGgGaAloD0MI53EYzF9BCcCUhpRSlGgVSzJoFkdApHhPChvitXV9lChoBmgJaA9DCMe9+Q0TrQjAlIaUUpRoFUsyaBZHQKR4CkRjBmB1fZQoaAZoCWgPQwiN8WH2sk0FwJSGlFKUaBVLMmgWR0Ckebkfkmx/dX2UKGgGaAloD0MI4zYawFsABcCUhpRSlGgVSzJoFkdApHl4Si/O+3V9lChoBmgJaA9DCIKOVrWkQwbAlIaUUpRoFUsyaBZHQKR5OFYdQwd1fZQoaAZoCWgPQwjwMO2b+4sEwJSGlFKUaBVLMmgWR0CkePOJ+DvmdX2UKGgGaAloD0MINpTai2g7B8CUhpRSlGgVSzJoFkdApHqehmGucXV9lChoBmgJaA9DCBU6r7FLNAzAlIaUUpRoFUsyaBZHQKR6XaOgg5l1fZQoaAZoCWgPQwjXicvxCmQKwJSGlFKUaBVLMmgWR0Ckeh2vbGm2dX2UKGgGaAloD0MIDYl7LH0oCcCUhpRSlGgVSzJoFkdApHnY46wMY3V9lChoBmgJaA9DCMDpXbwftwjAlIaUUpRoFUsyaBZHQKR7gD0UXYV1fZQoaAZoCWgPQwgR5QtaSOABwJSGlFKUaBVLMmgWR0Ckez9Ujs2OdX2UKGgGaAloD0MIKJzdWiYjDcCUhpRSlGgVSzJoFkdApHr/TgEU03V9lChoBmgJaA9DCMms3uF2aAnAlIaUUpRoFUsyaBZHQKR6um65Gz91fZQoaAZoCWgPQwhbmIV2TrMHwJSGlFKUaBVLMmgWR0CkfGaOYIBzdX2UKGgGaAloD0MIIm5OJQPgAMCUhpRSlGgVSzJoFkdApHwl2vB7/nV9lChoBmgJaA9DCNkKmpZYuQDAlIaUUpRoFUsyaBZHQKR75dY4hll1fZQoaAZoCWgPQwhSSDKrd7gNwJSGlFKUaBVLMmgWR0Cke6Ef1YhddX2UKGgGaAloD0MIWvYksDknBMCUhpRSlGgVSzJoFkdApH1CQFLWZ3V9lChoBmgJaA9DCDnVWpiFNgPAlIaUUpRoFUsyaBZHQKR9AZBLPD51fZQoaAZoCWgPQwjdXz3uW40EwJSGlFKUaBVLMmgWR0CkfMGHP/rCdX2UKGgGaAloD0MI7kEIyJfQ/L+UhpRSlGgVSzJoFkdApHx8wrUb1nV9lChoBmgJaA9DCJG0G33Mx/2/lIaUUpRoFUsyaBZHQKR+KDSPU8V1fZQoaAZoCWgPQwjdtYR80JMCwJSGlFKUaBVLMmgWR0CkfedVvMr3dX2UKGgGaAloD0MImBk2yvrtA8CUhpRSlGgVSzJoFkdApH2nWYnfEXV9lChoBmgJaA9DCMBbIEHxAwPAlIaUUpRoFUsyaBZHQKR9YoVEd/91fZQoaAZoCWgPQwhWSPlJtc8JwJSGlFKUaBVLMmgWR0CkfwkVnEl3dX2UKGgGaAloD0MIkIZT5ubbA8CUhpRSlGgVSzJoFkdApH7ISQHRkXV9lChoBmgJaA9DCACN0qV/qQLAlIaUUpRoFUsyaBZHQKR+iE1VHWl1fZQoaAZoCWgPQwjl1M4wtSX5v5SGlFKUaBVLMmgWR0CkfkOAy2x6dX2UKGgGaAloD0MIQURq2sX0BMCUhpRSlGgVSzJoFkdApH/v7P6bfHV9lChoBmgJaA9DCI+M1eb/1fu/lIaUUpRoFUsyaBZHQKR/rwG4ZuR1fZQoaAZoCWgPQwg10HzO3S4AwJSGlFKUaBVLMmgWR0Ckf27zkIX1dX2UKGgGaAloD0MIGxGMg0sH/L+UhpRSlGgVSzJoFkdApH8qJqIrOXV9lChoBmgJaA9DCDlDccebvP2/lIaUUpRoFUsyaBZHQKSA01vVEux1fZQoaAZoCWgPQwhosKnzqDgNwJSGlFKUaBVLMmgWR0CkgJKwhW5pdX2UKGgGaAloD0MIA5Xx7zMOCsCUhpRSlGgVSzJoFkdApIBSncclxHV9lChoBmgJaA9DCNF4Iojz8P6/lIaUUpRoFUsyaBZHQKSADhH9WIZ1fZQoaAZoCWgPQwjXprG9FjT3v5SGlFKUaBVLMmgWR0CkgbAWzniedX2UKGgGaAloD0MIui9ntiuUAsCUhpRSlGgVSzJoFkdApIFvYYixFHV9lChoBmgJaA9DCCOHiJtTCQLAlIaUUpRoFUsyaBZHQKSBL4oqkM11fZQoaAZoCWgPQwiHjEephGcBwJSGlFKUaBVLMmgWR0CkgOqvNeMRdX2UKGgGaAloD0MIzemymNg8/L+UhpRSlGgVSzJoFkdApIKaoCMglnV9lChoBmgJaA9DCL9J06Bonvu/lIaUUpRoFUsyaBZHQKSCWcWj4591fZQoaAZoCWgPQwgqH4Kq0csDwJSGlFKUaBVLMmgWR0CkghnRLK3edX2UKGgGaAloD0MI10y+2eYGBMCUhpRSlGgVSzJoFkdApIHU/wAlwHV9lChoBmgJaA9DCO/GgsKgDPu/lIaUUpRoFUsyaBZHQKSDgFEiMYN1fZQoaAZoCWgPQwi7Qh8sY4MAwJSGlFKUaBVLMmgWR0Ckgz9xQzk7dX2UKGgGaAloD0MIrDlAMEevAMCUhpRSlGgVSzJoFkdApIL/aN+9anV9lChoBmgJaA9DCFZl3xXBP/2/lIaUUpRoFUsyaBZHQKSCuqG1x851fZQoaAZoCWgPQwi8dmnDYan/v5SGlFKUaBVLMmgWR0CkhGZd4VyndX2UKGgGaAloD0MI+FJ40Oz6BsCUhpRSlGgVSzJoFkdApIQlpudf9nV9lChoBmgJaA9DCEATYcPTSwjAlIaUUpRoFUsyaBZHQKSD5ZkkKNR1fZQoaAZoCWgPQwgR/kXQmAn8v5SGlFKUaBVLMmgWR0Ckg6Db8FY/dX2UKGgGaAloD0MIhPHTuDc/AMCUhpRSlGgVSzJoFkdApIVP4Glhw3V9lChoBmgJaA9DCClC6nb2Vf6/lIaUUpRoFUsyaBZHQKSFDyIYWLx1fZQoaAZoCWgPQwidLouJzacAwJSGlFKUaBVLMmgWR0CkhM8jqv/zdX2UKGgGaAloD0MIxNFVuruuB8CUhpRSlGgVSzJoFkdApISKTpxFRnV9lChoBmgJaA9DCBX9oZknl/+/lIaUUpRoFUsyaBZHQKSGPK1XvH91fZQoaAZoCWgPQwiQSUbOwp7/v5SGlFKUaBVLMmgWR0CkhfvdVNpNdX2UKGgGaAloD0MIPzp15bOcCcCUhpRSlGgVSzJoFkdApIW74L1EmnV9lChoBmgJaA9DCNczhGOWPf2/lIaUUpRoFUsyaBZHQKSFdwyZa3Z1fZQoaAZoCWgPQwh/g/bq4+EAwJSGlFKUaBVLMmgWR0CkhyGNR3vAdX2UKGgGaAloD0MIWTMyyF1E+b+UhpRSlGgVSzJoFkdApIbgwAU+LXV9lChoBmgJaA9DCP0RhgFLbv2/lIaUUpRoFUsyaBZHQKSGoLCvX9R1fZQoaAZoCWgPQwjhQEgWMAECwJSGlFKUaBVLMmgWR0CkhlvUz9CNdX2UKGgGaAloD0MI9wFIbeJk/7+UhpRSlGgVSzJoFkdApIgFUIcBEXV9lChoBmgJaA9DCIpZL4ZyYv+/lIaUUpRoFUsyaBZHQKSHxHEuQIV1fZQoaAZoCWgPQwiBlq5gGxEBwJSGlFKUaBVLMmgWR0Ckh4R46fapdX2UKGgGaAloD0MILINqgxORA8CUhpRSlGgVSzJoFkdApIc/tfG+9XV9lChoBmgJaA9DCPkSKji8oP2/lIaUUpRoFUsyaBZHQKSI5k6Lfk51fZQoaAZoCWgPQwgNi1HX2jv9v5SGlFKUaBVLMmgWR0CkiKV01ZTydX2UKGgGaAloD0MIsi5uowG8CcCUhpRSlGgVSzJoFkdApIhlchTwUnV9lChoBmgJaA9DCAqBXOLIw/q/lIaUUpRoFUsyaBZHQKSIIMIeHSF1fZQoaAZoCWgPQwikjSPW4jMCwJSGlFKUaBVLMmgWR0CkicNaY/mldX2UKGgGaAloD0MIr83GSsxz/r+UhpRSlGgVSzJoFkdApImCifxtpHV9lChoBmgJaA9DCFW9/E6T+QLAlIaUUpRoFUsyaBZHQKSJQo4MnZ11fZQoaAZoCWgPQwhM4qyImij+v5SGlFKUaBVLMmgWR0CkiP2r4nF6dX2UKGgGaAloD0MI5Eo9C0J5AcCUhpRSlGgVSzJoFkdApIqsbNr0rnV9lChoBmgJaA9DCEUPfAxW/AHAlIaUUpRoFUsyaBZHQKSKa6mO2iN1fZQoaAZoCWgPQwixogbTMPwBwJSGlFKUaBVLMmgWR0CkiiuYIBzWdX2UKGgGaAloD0MIHEKVmj1Q/L+UhpRSlGgVSzJoFkdApInmzD4xlHV9lChoBmgJaA9DCFN3ZRcMbgDAlIaUUpRoFUsyaBZHQKSLiTTvy9V1fZQoaAZoCWgPQwhEp+fdWFD7v5SGlFKUaBVLMmgWR0Cki0hdD6WPdX2UKGgGaAloD0MIS1zHuOKi+b+UhpRSlGgVSzJoFkdApIsIVCXyAnV9lChoBmgJaA9DCDMV4pF4uf+/lIaUUpRoFUsyaBZHQKSKw4Ia99N1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2368f418e258d6baae0e7107745afb1b229c7564e3168f47f0d9665c207d5648
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34ff86fd817c0a293801e0fc5835b55d10a9b8bf462e31c1855840672e36e7a2
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f848167d3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8481676930>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674003424456559867, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAxo/dPjIhYTzV9Q8/xo/dPjIhYTzV9Q8/xo/dPjIhYTzV9Q8/xo/dPjIhYTzV9Q8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXZnwvkcqZT8xCrK/EZyAPxKmzr/OO9A/300lv1fjrz+Bib0/O6+LPuYCTz8/ACy+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADGj90+MiFhPNX1Dz/6GmQ7J66RutmebbnGj90+MiFhPNX1Dz/6GmQ7J66RutmebbnGj90+MiFhPNX1Dz/6GmQ7J66RutmebbnGj90+MiFhPNX1Dz/6GmQ7J66RutmebbmUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.43273753 0.01374082 0.56234485]\n [0.43273753 0.01374082 0.56234485]\n [0.43273753 0.01374082 0.56234485]\n [0.43273753 0.01374082 0.56234485]]", "desired_goal": "[[-0.46992007 0.89517635 -1.390936 ]\n [ 1.0047628 -1.6144431 1.6268251 ]\n [-0.64571947 1.3741254 1.4807588 ]\n [ 0.27282128 0.808638 -0.16796969]]", "observation": "[[ 4.3273753e-01 1.3740825e-02 5.6234485e-01 3.4806118e-03\n -1.1114524e-03 -2.2661257e-04]\n [ 4.3273753e-01 1.3740825e-02 5.6234485e-01 3.4806118e-03\n -1.1114524e-03 -2.2661257e-04]\n [ 4.3273753e-01 1.3740825e-02 5.6234485e-01 3.4806118e-03\n -1.1114524e-03 -2.2661257e-04]\n [ 4.3273753e-01 1.3740825e-02 5.6234485e-01 3.4806118e-03\n -1.1114524e-03 -2.2661257e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYroMvnZvGT48N0Y+gYKTvRwMhjzaoF0+h+MLPrLbyb0heJI+rpR4vXDbar27goU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.13742974 0.14983925 0.19357008]\n [-0.07202626 0.0163632 0.21643391]\n [ 0.13661014 -0.09856357 0.28607276]\n [-0.06068867 -0.05733818 0.26076302]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+s+aH39p/L+UhpRSlIwBbJRLMowBdJRHQKR2JCWNWEN1fZQoaAZoCWgPQwhWKT3TSwwQwJSGlFKUaBVLMmgWR0CkdeNDD0lJdX2UKGgGaAloD0MIar3faMdtB8CUhpRSlGgVSzJoFkdApHWjPIGQjnV9lChoBmgJaA9DCJPGaB1VDQbAlIaUUpRoFUsyaBZHQKR1XlZowmF1fZQoaAZoCWgPQwichxOYTmsDwJSGlFKUaBVLMmgWR0CkdwIzeoDQdX2UKGgGaAloD0MI1xUzwtuDB8CUhpRSlGgVSzJoFkdApHbBbY9PlHV9lChoBmgJaA9DCAMmcOtuXgHAlIaUUpRoFUsyaBZHQKR2gXtShrZ1fZQoaAZoCWgPQwimDBzQ0pX+v5SGlFKUaBVLMmgWR0Ckdjyc9W6tdX2UKGgGaAloD0MIwePbuwZdBMCUhpRSlGgVSzJoFkdApHfoVVPva3V9lChoBmgJaA9DCEkRGVbxhgPAlIaUUpRoFUsyaBZHQKR3p6v7m+11fZQoaAZoCWgPQwghsd09QDf/v5SGlFKUaBVLMmgWR0Ckd2e10DEFdX2UKGgGaAloD0MIT8x6MZSTCsCUhpRSlGgVSzJoFkdApHcjMcIZ63V9lChoBmgJaA9DCLiwbrw7cgTAlIaUUpRoFUsyaBZHQKR4z+Kjzqd1fZQoaAZoCWgPQwiiJ2VSQ9sEwJSGlFKUaBVLMmgWR0CkeI8G9pRGdX2UKGgGaAloD0MI53EYzF9BCcCUhpRSlGgVSzJoFkdApHhPChvitXV9lChoBmgJaA9DCMe9+Q0TrQjAlIaUUpRoFUsyaBZHQKR4CkRjBmB1fZQoaAZoCWgPQwiN8WH2sk0FwJSGlFKUaBVLMmgWR0Ckebkfkmx/dX2UKGgGaAloD0MI4zYawFsABcCUhpRSlGgVSzJoFkdApHl4Si/O+3V9lChoBmgJaA9DCIKOVrWkQwbAlIaUUpRoFUsyaBZHQKR5OFYdQwd1fZQoaAZoCWgPQwjwMO2b+4sEwJSGlFKUaBVLMmgWR0CkePOJ+DvmdX2UKGgGaAloD0MINpTai2g7B8CUhpRSlGgVSzJoFkdApHqehmGucXV9lChoBmgJaA9DCBU6r7FLNAzAlIaUUpRoFUsyaBZHQKR6XaOgg5l1fZQoaAZoCWgPQwjXicvxCmQKwJSGlFKUaBVLMmgWR0Ckeh2vbGm2dX2UKGgGaAloD0MIDYl7LH0oCcCUhpRSlGgVSzJoFkdApHnY46wMY3V9lChoBmgJaA9DCMDpXbwftwjAlIaUUpRoFUsyaBZHQKR7gD0UXYV1fZQoaAZoCWgPQwgR5QtaSOABwJSGlFKUaBVLMmgWR0Ckez9Ujs2OdX2UKGgGaAloD0MIKJzdWiYjDcCUhpRSlGgVSzJoFkdApHr/TgEU03V9lChoBmgJaA9DCMms3uF2aAnAlIaUUpRoFUsyaBZHQKR6um65Gz91fZQoaAZoCWgPQwhbmIV2TrMHwJSGlFKUaBVLMmgWR0CkfGaOYIBzdX2UKGgGaAloD0MIIm5OJQPgAMCUhpRSlGgVSzJoFkdApHwl2vB7/nV9lChoBmgJaA9DCNkKmpZYuQDAlIaUUpRoFUsyaBZHQKR75dY4hll1fZQoaAZoCWgPQwhSSDKrd7gNwJSGlFKUaBVLMmgWR0Cke6Ef1YhddX2UKGgGaAloD0MIWvYksDknBMCUhpRSlGgVSzJoFkdApH1CQFLWZ3V9lChoBmgJaA9DCDnVWpiFNgPAlIaUUpRoFUsyaBZHQKR9AZBLPD51fZQoaAZoCWgPQwjdXz3uW40EwJSGlFKUaBVLMmgWR0CkfMGHP/rCdX2UKGgGaAloD0MI7kEIyJfQ/L+UhpRSlGgVSzJoFkdApHx8wrUb1nV9lChoBmgJaA9DCJG0G33Mx/2/lIaUUpRoFUsyaBZHQKR+KDSPU8V1fZQoaAZoCWgPQwjdtYR80JMCwJSGlFKUaBVLMmgWR0CkfedVvMr3dX2UKGgGaAloD0MImBk2yvrtA8CUhpRSlGgVSzJoFkdApH2nWYnfEXV9lChoBmgJaA9DCMBbIEHxAwPAlIaUUpRoFUsyaBZHQKR9YoVEd/91fZQoaAZoCWgPQwhWSPlJtc8JwJSGlFKUaBVLMmgWR0CkfwkVnEl3dX2UKGgGaAloD0MIkIZT5ubbA8CUhpRSlGgVSzJoFkdApH7ISQHRkXV9lChoBmgJaA9DCACN0qV/qQLAlIaUUpRoFUsyaBZHQKR+iE1VHWl1fZQoaAZoCWgPQwjl1M4wtSX5v5SGlFKUaBVLMmgWR0CkfkOAy2x6dX2UKGgGaAloD0MIQURq2sX0BMCUhpRSlGgVSzJoFkdApH/v7P6bfHV9lChoBmgJaA9DCI+M1eb/1fu/lIaUUpRoFUsyaBZHQKR/rwG4ZuR1fZQoaAZoCWgPQwg10HzO3S4AwJSGlFKUaBVLMmgWR0Ckf27zkIX1dX2UKGgGaAloD0MIGxGMg0sH/L+UhpRSlGgVSzJoFkdApH8qJqIrOXV9lChoBmgJaA9DCDlDccebvP2/lIaUUpRoFUsyaBZHQKSA01vVEux1fZQoaAZoCWgPQwhosKnzqDgNwJSGlFKUaBVLMmgWR0CkgJKwhW5pdX2UKGgGaAloD0MIA5Xx7zMOCsCUhpRSlGgVSzJoFkdApIBSncclxHV9lChoBmgJaA9DCNF4Iojz8P6/lIaUUpRoFUsyaBZHQKSADhH9WIZ1fZQoaAZoCWgPQwjXprG9FjT3v5SGlFKUaBVLMmgWR0CkgbAWzniedX2UKGgGaAloD0MIui9ntiuUAsCUhpRSlGgVSzJoFkdApIFvYYixFHV9lChoBmgJaA9DCCOHiJtTCQLAlIaUUpRoFUsyaBZHQKSBL4oqkM11fZQoaAZoCWgPQwiHjEephGcBwJSGlFKUaBVLMmgWR0CkgOqvNeMRdX2UKGgGaAloD0MIzemymNg8/L+UhpRSlGgVSzJoFkdApIKaoCMglnV9lChoBmgJaA9DCL9J06Bonvu/lIaUUpRoFUsyaBZHQKSCWcWj4591fZQoaAZoCWgPQwgqH4Kq0csDwJSGlFKUaBVLMmgWR0CkghnRLK3edX2UKGgGaAloD0MI10y+2eYGBMCUhpRSlGgVSzJoFkdApIHU/wAlwHV9lChoBmgJaA9DCO/GgsKgDPu/lIaUUpRoFUsyaBZHQKSDgFEiMYN1fZQoaAZoCWgPQwi7Qh8sY4MAwJSGlFKUaBVLMmgWR0Ckgz9xQzk7dX2UKGgGaAloD0MIrDlAMEevAMCUhpRSlGgVSzJoFkdApIL/aN+9anV9lChoBmgJaA9DCFZl3xXBP/2/lIaUUpRoFUsyaBZHQKSCuqG1x851fZQoaAZoCWgPQwi8dmnDYan/v5SGlFKUaBVLMmgWR0CkhGZd4VyndX2UKGgGaAloD0MI+FJ40Oz6BsCUhpRSlGgVSzJoFkdApIQlpudf9nV9lChoBmgJaA9DCEATYcPTSwjAlIaUUpRoFUsyaBZHQKSD5ZkkKNR1fZQoaAZoCWgPQwgR/kXQmAn8v5SGlFKUaBVLMmgWR0Ckg6Db8FY/dX2UKGgGaAloD0MIhPHTuDc/AMCUhpRSlGgVSzJoFkdApIVP4Glhw3V9lChoBmgJaA9DCClC6nb2Vf6/lIaUUpRoFUsyaBZHQKSFDyIYWLx1fZQoaAZoCWgPQwidLouJzacAwJSGlFKUaBVLMmgWR0CkhM8jqv/zdX2UKGgGaAloD0MIxNFVuruuB8CUhpRSlGgVSzJoFkdApISKTpxFRnV9lChoBmgJaA9DCBX9oZknl/+/lIaUUpRoFUsyaBZHQKSGPK1XvH91fZQoaAZoCWgPQwiQSUbOwp7/v5SGlFKUaBVLMmgWR0CkhfvdVNpNdX2UKGgGaAloD0MIPzp15bOcCcCUhpRSlGgVSzJoFkdApIW74L1EmnV9lChoBmgJaA9DCNczhGOWPf2/lIaUUpRoFUsyaBZHQKSFdwyZa3Z1fZQoaAZoCWgPQwh/g/bq4+EAwJSGlFKUaBVLMmgWR0CkhyGNR3vAdX2UKGgGaAloD0MIWTMyyF1E+b+UhpRSlGgVSzJoFkdApIbgwAU+LXV9lChoBmgJaA9DCP0RhgFLbv2/lIaUUpRoFUsyaBZHQKSGoLCvX9R1fZQoaAZoCWgPQwjhQEgWMAECwJSGlFKUaBVLMmgWR0CkhlvUz9CNdX2UKGgGaAloD0MI9wFIbeJk/7+UhpRSlGgVSzJoFkdApIgFUIcBEXV9lChoBmgJaA9DCIpZL4ZyYv+/lIaUUpRoFUsyaBZHQKSHxHEuQIV1fZQoaAZoCWgPQwiBlq5gGxEBwJSGlFKUaBVLMmgWR0Ckh4R46fapdX2UKGgGaAloD0MILINqgxORA8CUhpRSlGgVSzJoFkdApIc/tfG+9XV9lChoBmgJaA9DCPkSKji8oP2/lIaUUpRoFUsyaBZHQKSI5k6Lfk51fZQoaAZoCWgPQwgNi1HX2jv9v5SGlFKUaBVLMmgWR0CkiKV01ZTydX2UKGgGaAloD0MIsi5uowG8CcCUhpRSlGgVSzJoFkdApIhlchTwUnV9lChoBmgJaA9DCAqBXOLIw/q/lIaUUpRoFUsyaBZHQKSIIMIeHSF1fZQoaAZoCWgPQwikjSPW4jMCwJSGlFKUaBVLMmgWR0CkicNaY/mldX2UKGgGaAloD0MIr83GSsxz/r+UhpRSlGgVSzJoFkdApImCifxtpHV9lChoBmgJaA9DCFW9/E6T+QLAlIaUUpRoFUsyaBZHQKSJQo4MnZ11fZQoaAZoCWgPQwhM4qyImij+v5SGlFKUaBVLMmgWR0CkiP2r4nF6dX2UKGgGaAloD0MI5Eo9C0J5AcCUhpRSlGgVSzJoFkdApIqsbNr0rnV9lChoBmgJaA9DCEUPfAxW/AHAlIaUUpRoFUsyaBZHQKSKa6mO2iN1fZQoaAZoCWgPQwixogbTMPwBwJSGlFKUaBVLMmgWR0CkiiuYIBzWdX2UKGgGaAloD0MIHEKVmj1Q/L+UhpRSlGgVSzJoFkdApInmzD4xlHV9lChoBmgJaA9DCFN3ZRcMbgDAlIaUUpRoFUsyaBZHQKSLiTTvy9V1fZQoaAZoCWgPQwhEp+fdWFD7v5SGlFKUaBVLMmgWR0Cki0hdD6WPdX2UKGgGaAloD0MIS1zHuOKi+b+UhpRSlGgVSzJoFkdApIsIVCXyAnV9lChoBmgJaA9DCDMV4pF4uf+/lIaUUpRoFUsyaBZHQKSKw4Ia99N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (792 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.2584439531899987, "std_reward": 0.4681074028919065, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T01:40:59.566346"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9817d544475b01b2e8738083b68f5412437100d905d23098fb29294c94cd3527
3
+ size 3212