jtlicardo commited on
Commit
f81a490
·
1 Parent(s): 68895ec

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -0
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - winograd_wsc
7
+ metrics:
8
+ - rouge
9
+ model-index:
10
+ - name: flan-t5-small-coref
11
+ results:
12
+ - task:
13
+ name: Sequence-to-sequence Language Modeling
14
+ type: text2text-generation
15
+ dataset:
16
+ name: winograd_wsc
17
+ type: winograd_wsc
18
+ config: wsc285
19
+ split: test
20
+ args: wsc285
21
+ metrics:
22
+ - name: Rouge1
23
+ type: rouge
24
+ value: 0.906
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # flan-t5-small-coref
31
+
32
+ This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the winograd_wsc dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.5656
35
+ - Rouge1: 0.906
36
+ - Rouge2: 0.8192
37
+ - Rougel: 0.9016
38
+ - Rougelsum: 0.9026
39
+ - Gen Len: 23.1724
40
+
41
+ ## Model description
42
+
43
+ More information needed
44
+
45
+ ## Intended uses & limitations
46
+
47
+ More information needed
48
+
49
+ ## Training and evaluation data
50
+
51
+ More information needed
52
+
53
+ ## Training procedure
54
+
55
+ ### Training hyperparameters
56
+
57
+ The following hyperparameters were used during training:
58
+ - learning_rate: 2e-05
59
+ - train_batch_size: 16
60
+ - eval_batch_size: 16
61
+ - seed: 42
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - num_epochs: 20
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
69
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
70
+ | No log | 1.0 | 16 | 1.0901 | 0.6849 | 0.561 | 0.6734 | 0.6746 | 18.4483 |
71
+ | No log | 2.0 | 32 | 0.9083 | 0.8512 | 0.7509 | 0.8438 | 0.8437 | 21.1379 |
72
+ | No log | 3.0 | 48 | 0.8132 | 0.8638 | 0.7728 | 0.8588 | 0.8595 | 21.8276 |
73
+ | No log | 4.0 | 64 | 0.7590 | 0.8786 | 0.7842 | 0.8744 | 0.876 | 22.2069 |
74
+ | No log | 5.0 | 80 | 0.7225 | 0.8846 | 0.7928 | 0.8805 | 0.8817 | 22.3793 |
75
+ | No log | 6.0 | 96 | 0.6920 | 0.886 | 0.7942 | 0.8821 | 0.8827 | 22.4483 |
76
+ | No log | 7.0 | 112 | 0.6660 | 0.8861 | 0.7922 | 0.8816 | 0.8827 | 22.5172 |
77
+ | No log | 8.0 | 128 | 0.6470 | 0.8879 | 0.7953 | 0.8836 | 0.8849 | 22.6897 |
78
+ | No log | 9.0 | 144 | 0.6318 | 0.8968 | 0.806 | 0.8923 | 0.8933 | 23.069 |
79
+ | No log | 10.0 | 160 | 0.6160 | 0.8968 | 0.806 | 0.8923 | 0.8933 | 23.069 |
80
+ | No log | 11.0 | 176 | 0.6055 | 0.9056 | 0.822 | 0.9014 | 0.9021 | 23.1724 |
81
+ | No log | 12.0 | 192 | 0.5962 | 0.9056 | 0.822 | 0.9014 | 0.9021 | 23.1724 |
82
+ | No log | 13.0 | 208 | 0.5884 | 0.9074 | 0.8246 | 0.9033 | 0.9042 | 23.2069 |
83
+ | No log | 14.0 | 224 | 0.5825 | 0.9049 | 0.8182 | 0.9005 | 0.9016 | 23.2414 |
84
+ | No log | 15.0 | 240 | 0.5769 | 0.9049 | 0.8182 | 0.9005 | 0.9016 | 23.2414 |
85
+ | No log | 16.0 | 256 | 0.5727 | 0.903 | 0.8132 | 0.8991 | 0.8997 | 23.1724 |
86
+ | No log | 17.0 | 272 | 0.5698 | 0.906 | 0.8192 | 0.9016 | 0.9026 | 23.1724 |
87
+ | No log | 18.0 | 288 | 0.5673 | 0.906 | 0.8192 | 0.9016 | 0.9026 | 23.1724 |
88
+ | No log | 19.0 | 304 | 0.5661 | 0.906 | 0.8192 | 0.9016 | 0.9026 | 23.1724 |
89
+ | No log | 20.0 | 320 | 0.5656 | 0.906 | 0.8192 | 0.9016 | 0.9026 | 23.1724 |
90
+
91
+
92
+ ### Framework versions
93
+
94
+ - Transformers 4.25.1
95
+ - Pytorch 1.13.0+cu116
96
+ - Datasets 2.7.1
97
+ - Tokenizers 0.13.2