{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a6e5ab3e200>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1732534376106400570, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAECkJ77lsH4/+v7YPdqSa75RN4W9PvaiPQAAAAAAAAAAGvhKvVt5QT+r/XU9i6qAvmJccrp1FuI8AAAAAAAAAABmBAQ94bydumvmdbn1Oxq0p/RSuuIcjTgAAIA/AACAPy33Nz7xsOY+FT/2vRZWVr7tg6+8jj/ZPAAAAAAAAAAAZoAHPUhNl7oqpkE6Ef0ks9E4Ertqmlu5AACAPwAAgD9m+xu9JjWkP1Z33b0taXC+hedXvbdEM7wAAAAAAAAAACaqlz1Sguu7umeBPJ2vnzzXykw9p32FvQAAgD8AAIA/ZlxhPNgTpD6+OYy8fLJ+vpPP17wWyso7AAAAAAAAAABtsoC+rPtbP646zz30rYC+UtEevaJiIT0AAAAAAAAAAM02u7yDGCM99lu7vVZZdr7a0p+9ArdYPAAAAAAAAAAA4MMxPjNwfD8A0KA9xGqMvggjxz3EDki8AAAAAAAAAABm8VU+KrILvUC5w7iRt9I3kGdyvnBVCjgAAAAAAACAP6BsBb7fDhc/OCTvPTv6rb73E6W7qkiXvQAAAAAAAAAAWm/GPeEGmbotom+6LJ7VNVBTCTs/W4o5AACAPwAAgD/d25e+zh4zP80rfj0ePIu+yrnjvRNY5j0AAAAAAAAAAM1LijwUEIu6DsQfOVP1FTQvyl06isU5uAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGTFl4cFQl+MAWyUTegDjAF0lEdAlQ5OPNmlInV9lChoBkdARGJ6v7m+02gHTTUBaAhHQJUQ3iiqQzV1fZQoaAZHQF6b7VawD/5oB03oA2gIR0CVFGwDeTFEdX2UKGgGR0A0OjJ+2E00aAdNQgFoCEdAlRU4eYD1XnV9lChoBkdAXkzBLwnYx2gHTegDaAhHQJUa6flIVdp1fZQoaAZHQGR3DR+jM3ZoB03oA2gIR0CVHqGKhtcfdX2UKGgGR0BymQuDjBEbaAdNWQNoCEdAlSzeoxYaHnV9lChoBkdAQsijUNKAa2gHTR8BaAhHQJUxjThHbyp1fZQoaAZHQGPUaisXBP9oB03oA2gIR0CVMupGnXNDdX2UKGgGR0BlN8p9ZzPsaAdN6ANoCEdAlTQBtpEhJXV9lChoBkdAZJHfXwsoUmgHTegDaAhHQJU0NWhh6Sl1fZQoaAZHQGbD5xaPjn5oB03oA2gIR0CVNZ1tO2y+dX2UKGgGR0BlBWgctGutaAdN6ANoCEdAlTYDpgTh53V9lChoBkdAZWhB4Uvf0mgHTegDaAhHQJU5/1tfoid1fZQoaAZHQGQxO01IiC9oB03oA2gIR0CVPy8baRISdX2UKGgGR0BxFidOIqLCaAdNdAJoCEdAlT/S8OCoTHV9lChoBkdAZx70se4kNWgHTegDaAhHQJU/7tb9qDd1fZQoaAZHQG6pTb349HNoB03VAmgIR0CVVeR02cawdX2UKGgGR0BwmorBj4HpaAdNqgFoCEdAlVe3FUADJXV9lChoBkdAYwXlWfbsW2gHTegDaAhHQJVc7446wMZ1fZQoaAZHQG2HprLyMDRoB03AAWgIR0CVXQU/wAlwdX2UKGgGR0BxffundfsvaAdNiwNoCEdAlV6GIGhVVHV9lChoBkdAXw7DEWIoE2gHTegDaAhHQJViyk2xY7t1fZQoaAZHQHGG1Id2gWdoB00aA2gIR0CVZU4/u9eydX2UKGgGR0BxnXg88s+WaAdNzQJoCEdAlXB/ViF0xXV9lChoBkdAbicLyc0+DGgHTdECaAhHQJV0beqJdjZ1fZQoaAZHQHBAgYtQKrtoB03jAWgIR0CVeOkiD/VBdX2UKGgGR0Bxux6C17Y1aAdNaAJoCEdAlXnIGt6ol3V9lChoBkdAcGTIUahpQGgHTYMCaAhHQJV7lXnyNGV1fZQoaAZHQGJrP9DQZ4xoB03oA2gIR0CVg73qAz55dX2UKGgGR0BkZ+XLNfPYaAdN6ANoCEdAlYPxdMTN+3V9lChoBkdAZYwUuctoSWgHTegDaAhHQJWFPCEYfnx1fZQoaAZHQGTwljNIK+loB03oA2gIR0CVif1w5vLpdX2UKGgGR0BrrIPEsJ6ZaAdNxwNoCEdAlY38YQ8OkXV9lChoBkdAbe745cTrV2gHTUYDaAhHQJWUVz5oGpx1fZQoaAZHQHFIngDRtxdoB01AA2gIR0CVla99MK1HdX2UKGgGR0Bj6CESM98raAdN6ANoCEdAlZifrnkkr3V9lChoBkdAbknbfxc3VGgHTeMBaAhHQJWYrSjQAuJ1fZQoaAZHQDYMwwj+rENoB00+AWgIR0CVrBsrupjudX2UKGgGR0BsCKzeGfwraAdNuQNoCEdAla6rq6e5F3V9lChoBkdAbMBQRf4REmgHTUYDaAhHQJWuuvmozep1fZQoaAZHQHFNVfiPyTZoB00UAmgIR0CVsDyFfzBidX2UKGgGR0Ang4PwuuifaAdNLwFoCEdAlbFWPkq+anV9lChoBkdARJ4wmE4//2gHTQ0BaAhHQJWyqtCAtnR1fZQoaAZHQG8vgc94eLhoB03SA2gIR0CVtAGFSKm9dX2UKGgGR0BtxWvKU3XJaAdNGwJoCEdAlblC7K7qZHV9lChoBkdAQ210V8CxNmgHTScBaAhHQJW8BAfMfRx1fZQoaAZHQGWEUaya/h5oB03oA2gIR0CVwlD/VAiWdX2UKGgGR0Bi/xnvlU6xaAdN6ANoCEdAlcdY8uBczXV9lChoBkdAbhttzCDVY2gHTQQCaAhHQJXJv6UJOWV1fZQoaAZHQHDek9QoCuFoB02SAWgIR0CVzOxtHhCMdX2UKGgGR0BxWvUTcqOMaAdNXwFoCEdAlc0XgHeJpHV9lChoBkdAY8KYLLIPsmgHTegDaAhHQJXN7FKkEcN1fZQoaAZHQHDVaUu+RHRoB00mAmgIR0CVzwZ00WM1dX2UKGgGRz/0ronrpqyoaAdNHwFoCEdAlc8P5gw483V9lChoBkdAMbXf2saKk2gHTRMBaAhHQJXRAT8HfMx1fZQoaAZHQG+X2joIOYpoB02RA2gIR0CV0ny4Wk8BdX2UKGgGR0BwqtwJgLJCaAdNigJoCEdAldQoQFs54nV9lChoBkdAQivtdAxBV2gHS/5oCEdAldRCrLhaT3V9lChoBkdAbldNucc2i2gHTbQCaAhHQJXY50fYBeZ1fZQoaAZHQEpqFhXr+o9oB009AWgIR0CV2uJnxri3dX2UKGgGR0Bw4Fx//echaAdNXQFoCEdAld97SZ0CBHV9lChoBkdAalStwJgLJGgHTWkBaAhHQJXhcUUO/cp1fZQoaAZHQHArIwudwvRoB01zAWgIR0CV4gqbBoEkdX2UKGgGR0BnB7yjHn2aaAdN6ANoCEdAleOOlGgBcXV9lChoBkdAbjp6xgRbr2gHTYYBaAhHQJX98b1h9b51fZQoaAZHQDBWE25xzaNoB0v3aAhHQJX98QFs54p1fZQoaAZHQG6+2MS9M9NoB01UAmgIR0CV/oZUkv9MdX2UKGgGR0BdmsERraduaAdN6ANoCEdAlf+gdXDFZXV9lChoBkdAbb+EQoTfzmgHTc0BaAhHQJYAmJO32El1fZQoaAZHQGU+dWhh6SloB03oA2gIR0CWAXGMXJo1dX2UKGgGR0BrgyCQLeANaAdNZgJoCEdAlgNPNiYsunV9lChoBkdAYbjVsDW9UWgHTegDaAhHQJYD1FmWdEt1fZQoaAZHQG4NKNZNfw9oB00zAmgIR0CWBDnIyTIOdX2UKGgGR0BxR2E384xUaAdNfgFoCEdAlgkEm6XjVHV9lChoBkdAa/SbjLjgh2gHTV8BaAhHQJYJCnCO3lV1fZQoaAZHQG73JNbkfcNoB02TAWgIR0CWC+XhwVCYdX2UKGgGR8ApaWHk92X+aAdNEwFoCEdAlg0xJ/XoT3V9lChoBkdAboP8NQTEi2gHTYkCaAhHQJYQBO9FnZl1fZQoaAZHQHCXmFnIyTJoB03ZAWgIR0CWENXCCSRsdX2UKGgGR0BxKDpaA4GVaAdNewFoCEdAlhDqNQ0oB3V9lChoBkdAcobzPa+N+GgHTQMDaAhHQJYQ6Dwpe/p1fZQoaAZHQGIZ9CNS619oB03oA2gIR0CWFS6o2n89dX2UKGgGR0ByItW4mTkiaAdNigFoCEdAlhYDhxYJV3V9lChoBkdAOhhCpm29c2gHTQQBaAhHQJYeV5Qgs9V1fZQoaAZHQHGDzOxB3RpoB02PAmgIR0CWH1gL7XQMdX2UKGgGR0BrumZE2HclaAdNggFoCEdAliAmEPDpDHV9lChoBkdAcI6UO/cnE2gHTUYCaAhHQJYgNgE2YOV1fZQoaAZHQHFWWA9V3lloB020AmgIR0CWIhJWvKU3dX2UKGgGR0Bx2XdSEUTMaAdNTgFoCEdAliLQFPi1iXV9lChoBkdAahhD8cdYGWgHTRICaAhHQJYk/o7muDB1fZQoaAZHQGv4+WWyC4BoB02fAWgIR0CWJzysjmjkdX2UKGgGR0BxlrUwztTlaAdNRwFoCEdAlih44ACGOHV9lChoBkdAcp8wZwXIl2gHTewBaAhHQJYq4j4YaYN1fZQoaAZHQGxvfcFhXsBoB00yAmgIR0CWLBX5nDiwdX2UKGgGR0BATFE7W/ahaAdL62gIR0CWLXKeTV2BdX2UKGgGR0Bu8NLWZqmCaAdNZgNoCEdAli2GFnIyTXV9lChoBkdAbxUkfLcKxGgHTboCaAhHQJYvO0v4/NZ1fZQoaAZHQHETvjn3cpNoB03DAWgIR0CWL8Zr56+ndX2UKGgGR0A+SnBLwnYyaAdNEAFoCEdAljNPVd5Y5nVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}