File size: 41,489 Bytes
88513b3 cba0a1d 6ca7132 cba0a1d 88513b3 6ca7132 88513b3 cba0a1d 88513b3 cba0a1d 88513b3 6ca7132 88513b3 cba0a1d 88513b3 6ca7132 88513b3 6ca7132 88513b3 6ca7132 cba0a1d 6ca7132 cba0a1d 6ca7132 cba0a1d 6ca7132 88513b3 6ca7132 cba0a1d 6ca7132 cba0a1d 6ca7132 88513b3 6ca7132 88513b3 6ca7132 88513b3 6ca7132 88513b3 6ca7132 88513b3 6ca7132 88513b3 6ca7132 88513b3 6ca7132 cba0a1d 6ca7132 88513b3 6ca7132 cba0a1d 6ca7132 cba0a1d 6ca7132 cba0a1d 6ca7132 cba0a1d 6ca7132 cba0a1d 6ca7132 cba0a1d 6ca7132 cba0a1d 6ca7132 cba0a1d 6ca7132 cba0a1d 6ca7132 cba0a1d 6ca7132 cba0a1d 6ca7132 88513b3 6ca7132 cba0a1d 6ca7132 cba0a1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 |
from typing import Callable, Optional, Tuple
import copy
import json
import math
import multiprocessing
import os
import torch
import torch.nn as nn
import transformers
class ContextualModelConfig(transformers.configuration_utils.PretrainedConfig):
"""We create a dummy configuration class that will just set properties
based on whatever kwargs we pass in.
When this class is initialized (see experiments.py) we pass in the
union of all data, model, and training args, all of which should
get saved to the config json.
"""
def __init__(self, **kwargs):
for key, value in kwargs.items():
try:
json.dumps(value)
setattr(self, key, value)
except TypeError:
# value was not JSON-serializable, skip
continue
super().__init__()
def load_embedder_and_tokenizer(name: str) -> Tuple[
transformers.PreTrainedModel,
transformers.PreTrainedTokenizer
]:
assert name is not None, "name must be provided to load_embedder_and_tokenizer"
if name.startswith("nomic") or (name == "bert-base-uncased"):
model = transformers.AutoModelForMaskedLM.from_pretrained(name, trust_remote_code=True).bert
tokenizer = transformers.AutoTokenizer.from_pretrained(name)
elif name in ["gtr-base", "gtr_base"]:
model = transformers.AutoModel.from_pretrained(
"sentence-transformers/gtr-t5-base"
).encoder
tokenizer = transformers.AutoTokenizer.from_pretrained(
"sentence-transformers/gtr-t5-base"
)
elif name == "pile-t5-base-encoder":
model = transformers.AutoModel.from_pretrained(
"EleutherAI/pile-t5-base"
).encoder
tokenizer = transformers.AutoTokenizer.from_pretrained(
"EleutherAI/pile-t5-base"
)
tokenizer.pad_token = tokenizer.eos_token
elif name == "pile-t5-base-decoder":
model = transformers.AutoModel.from_pretrained(
"EleutherAI/pile-t5-base"
).decoder
tokenizer = transformers.AutoTokenizer.from_pretrained(
"EleutherAI/pile-t5-base"
)
tokenizer.pad_token = tokenizer.eos_token
elif name.startswith("gpt2") or name.startswith("meta-llama") or ("Llama" in name):
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
# torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
# device_map="auto",
)
model.padding_side = "right"
tokenizer = transformers.AutoTokenizer.from_pretrained(name)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.add_eos_token = True
else:
model = transformers.AutoModel.from_pretrained(name, trust_remote_code=True)
tokenizer = transformers.AutoTokenizer.from_pretrained(name)
# if use_bettertransformer:
# from optimum.bettertransformer import BetterTransformer
# model = BetterTransformer.transform(model)
return model, tokenizer
def get_world_size() -> int:
try:
return torch.distributed.get_world_size()
except (RuntimeError, ValueError):
return 1
def get_rank() -> int:
try:
return torch.distributed.get_rank()
except (RuntimeError, ValueError):
return 0
def gather(t: torch.Tensor) -> torch.Tensor:
# torch.distributed.nn.all_gather scales by world size since the reduce op is SUM
# https://github.com/pytorch/pytorch/issues/58005
# only should use torch.distributed.nn.all_gather if we implement a `local_loss`
# like: https://github.com/mlfoundations/open_clip/issues/616
world_size = get_world_size()
if world_size == 1:
return t
if t.ndim == 0:
t = t.unsqueeze(0)
gathered = [torch.empty_like(t) for _ in range(world_size)]
torch.distributed.all_gather(gathered, t)
gathered[get_rank()] = t
return torch.cat(gathered, dim=0)
def gather_sum(t: torch.Tensor) -> torch.Tensor:
# torch.distributed.nn.all_gather scales by world size since the reduce op is SUM
# https://github.com/pytorch/pytorch/issues/58005
# only should use torch.distributed.nn.all_gather if we implement a `local_loss`
# like: https://github.com/mlfoundations/open_clip/issues/616
world_size = get_world_size()
if world_size == 1:
return t
if t.ndim == 0:
t = t.unsqueeze(0)
gathered = [torch.empty_like(t) for _ in range(world_size)]
torch.distributed.all_gather(gathered, t)
gathered = torch.stack(gathered, dim=0)
return gathered.sum(dim=0) # Sum across workers
def get_num_proc() -> int:
world_size: int = get_world_size()
try:
# os.sched_getaffinity respects schedulers, unlike cpu_count(), but it's only available
# on some Unix platforms, so we support both!
return len(os.sched_getaffinity(0)) // world_size # type: ignore[attr-defined]
except AttributeError:
return multiprocessing.cpu_count() // world_size
def torch_main_worker_finish_first(func: Callable):
def wrapper(*args, **kwargs):
# Get local rank (need to support non-DDP).
try:
local_rank = torch.distributed.get_rank()
ddp_enabled = True
except (RuntimeError, ValueError):
local_rank = -1
ddp_enabled = False
is_main_worker = local_rank <= 0
# Run on main worker first.
if is_main_worker:
result = func(*args, **kwargs)
# Then everyone waits.
if ddp_enabled:
torch.distributed.barrier()
# Run on other workers now.
if not is_main_worker:
result = func(*args, **kwargs)
# Now everyone waits again.
if ddp_enabled:
torch.distributed.barrier()
return result
return wrapper
def print0(*args, **kwargs) -> None:
if get_rank() == 0:
print(*args, **kwargs)
def verify_ddp_weights_equal(model: torch.nn.Module, atol: float = 1e-5) -> None:
if hasattr(model, "module"):
model = model.module
world_size = get_world_size()
if world_size > 8:
print0(f"[verify_ddp_weights_equal] Skipping with world_size={world_size} ⚠️")
return
for name, param in model.named_parameters():
if param is None: continue
if param.grad is None:
print0(f"[verify_ddp_weights_equal] Skipping param [{name}] with no grad")
continue
gathered_param = gather(param).reshape((world_size, -1))
absolute_diffs = (gathered_param[None, 0, :] - gathered_param).abs()
rank_params_eq = (absolute_diffs < atol).all()
assert rank_params_eq, f"❌ param [{name}] not equal - got max_absolute_diff={absolute_diffs.max()}"
###################################################################################################################
gathered_param_grad = gather(param.grad).reshape((world_size, -1))
absolute_grad_diffs = (gathered_param_grad[None, 0, :] - gathered_param_grad).abs()
rank_grad_params_eq = (absolute_grad_diffs < atol).all()
assert rank_grad_params_eq, f"❌ param [{name}] grad not equal - got max_absolute_diff={absolute_grad_diffs.max()}"
###################################################################################################################
print0("[verify_ddp_weights_equal] Verified DDP parameter correctness ✅")
def mean_pool_3d(
hidden_states: torch.Tensor, attention_mask: torch.Tensor
) -> torch.Tensor:
B, T, S, D = hidden_states.shape
unmasked_outputs = hidden_states * attention_mask[..., None]
pooled_outputs = unmasked_outputs.sum(dim=2) / (attention_mask.sum(dim=2)[..., None] + 1e-9)
# fix for gradient flow: fill empty rows with the mean of the rest of the sequence
sequence_means = (
hidden_states.reshape((B, S * T, D))
.mean(dim=1, keepdim=True)
.expand(-1, T, -1)
)
pooled_outputs = pooled_outputs.where(
(attention_mask.sum(dim=2)[..., None] > 0),
sequence_means
)
assert pooled_outputs.shape == (B, T, D)
return pooled_outputs
def mean_pool(
hidden_states: torch.Tensor, attention_mask: torch.Tensor
) -> torch.Tensor:
B, _S, D = hidden_states.shape
unmasked_outputs = hidden_states * attention_mask[..., None]
pooled_outputs = unmasked_outputs.sum(dim=1) / (attention_mask.sum(dim=1)[:, None] + 1e-20)
assert pooled_outputs.shape == (B, D)
return pooled_outputs
def mean_pool_weighted(
hidden_states: torch.Tensor, attention_mask: torch.Tensor
) -> torch.Tensor:
B, _S, D = hidden_states.shape
attention_mask *= attention_mask.cumsum(dim=1) # [0,1,1,1,0,0] -> [0,1,2,3,0,0]
s = torch.sum(hidden_states * attention_mask.unsqueeze(-1).float(), dim=1)
d = attention_mask.sum(dim=1, keepdim=True).float()
return s / d
def slice_sparse_tensor_rows(t: torch.sparse.Tensor, min_row: int, max_row: int) -> torch.sparse.Tensor:
assert min_row < max_row, f"can't slice from row {min_row} to {max_row}"
t = t.coalesce()
row_idxs = t.indices()[0]
index_mask = (min_row <= row_idxs) & (row_idxs < max_row)
num_rows = (max_row - min_row)
num_cols = t.shape[1]
idxs = t.indices()[:, index_mask]
vals = t.values()[index_mask]
return torch.sparse_coo_tensor(idxs, vals, size=(num_rows, num_cols)).coalesce()
def slice_tensor_rows(t: torch.Tensor, min_row: int, max_row: int) -> torch.Tensor:
if t.is_sparse:
return slice_sparse_tensor_rows(t=t, min_row=min_row, max_row=max_row)
else:
return t[min_row:max_row]
@torch.no_grad
def maxsim(
X: torch.Tensor, y: torch.Tensor,
maximize: bool, chunk_size: int = 8_000,
debug_mem_usage: bool = False) -> torch.Tensor:
device = X.device
n_samples = X.shape[0]
max_sim_v = torch.zeros(n_samples, device=device, dtype=X.dtype)
max_sim_i = torch.zeros(n_samples, device=device, dtype=torch.int64)
# TODO: Implement faster max (without going to dense tensors).
# TODO: Use multiple GPUs.
rank = get_rank()
world_size = get_world_size()
worker_worklist_size = int(math.ceil(n_samples / world_size))
splits_start_idx = worker_worklist_size * rank
splits_end_idx = worker_worklist_size * (rank + 1)
for i in range(splits_start_idx, splits_end_idx, chunk_size):
start, end = i, min(i + chunk_size, n_samples)
sub_x = slice_tensor_rows(X, start, end)
if debug_mem_usage: print(f"[maxsim] step {i} cuda mem free/total = {torch.cuda.mem_get_info()}")
if debug_mem_usage: print("[maxsim] sub_x.shape:", sub_x.shape, "//", "y.shape:", y.shape)
sub_sim = sub_x @ y # TODO – Implement sparse max here to save mem!
sub_sim = sub_sim
if maximize:
sub_max_sim_v, sub_max_sim_i = sub_sim.to_dense().max(dim=-1)
else:
sub_max_sim_v, sub_max_sim_i = sub_sim.to_dense().min(dim=-1)
del sub_sim
del sub_x
torch.cuda.empty_cache() # needs to happen after maxsim for some reason.
max_sim_v[start: end] = sub_max_sim_v
max_sim_i[start: end] = sub_max_sim_i
# gather
max_sim_v = gather_sum(max_sim_v)
max_sim_i = gather_sum(max_sim_i)
k = y.shape[1]
assert max_sim_v.shape == (n_samples,)
assert max_sim_i.shape == (n_samples,)
assert max_sim_i.min() >= 0
assert max_sim_i.max() <= k
return max_sim_v, max_sim_i
def forward_batched(
model: torch.nn.Module,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
batch_size: int,
dataset_input_ids: Optional[torch.Tensor] = None,
dataset_attention_mask: Optional[torch.Tensor] = None,
**second_stage_model_kwargs,
) -> torch.Tensor:
if hasattr(model, "module"):
model = model.module
if hasattr(model, "first_stage_model"):
# Support pooling over 3D dataset_input_ids inputs.
if len(dataset_input_ids.shape) == 2:
dataset_input_ids = dataset_input_ids[None]
dataset_attention_mask = dataset_attention_mask[None]
dataset_embeddings = []
for j in range(len(dataset_input_ids)):
i = 0
dataset_embeddings_batch = []
while i < dataset_input_ids.shape[1]:
dataset_embeddings_batch.append(
model.first_stage_model(
input_ids=dataset_input_ids[j][i:i+batch_size],
attention_mask=dataset_attention_mask[j][i:i+batch_size],
)
)
i += batch_size
dataset_embeddings.append(
torch.cat(dataset_embeddings_batch, dim=0)
)
# Automatically pool over 3D dataset_input_ids.
dataset_embeddings = torch.stack(dataset_embeddings, dim=0).mean(dim=0)
j = 0
outputs = []
while j < len(input_ids):
outputs.append(
model.second_stage_model(
input_ids=input_ids[j:j+batch_size],
attention_mask=attention_mask[j:j+batch_size],
dataset_embeddings=dataset_embeddings,
**second_stage_model_kwargs,
)
)
j += batch_size
return torch.cat(outputs, dim=0)
else:
i = 0
outputs = []
while i < len(input_ids):
outputs.append(
model(
input_ids=input_ids[i:i+batch_size],
attention_mask=attention_mask[i:i+batch_size],
**second_stage_model_kwargs,
)
)
i += batch_size
return torch.cat(outputs, dim=0)
def last_token_pool(hidden_state: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
# https://github.com/ContextualAI/gritlm/blob/main/gritlm/gritlm.py#L190
b, n, d = hidden_state.size()
# Get the last `1` in the attention mask of each item
# Often it is just `gather_indices = torch.argmin(attention_mask, 1, keepdim=False) - 1`
# except when 1) There's all 1's 2) There's 0's before the 1's
reversed_mask = torch.flip(attention_mask, dims=(1,))
argmax_reverse = torch.argmax(reversed_mask, dim=1, keepdim=False)
gather_indices = attention_mask.size(1) - argmax_reverse - 1
# If there are empty sequences, where the index would become -1 it will crash so set them to 0
gather_indices = torch.clamp(gather_indices, min=0)
# Turn indices from shape [b] -> [b, 1, d]
gather_indices = gather_indices.unsqueeze(-1).repeat(1, d)
gather_indices = gather_indices.unsqueeze(1)
assert gather_indices.shape == (b, 1, d)
# Gather along the seq len: [b, n, d] -> [b, d]
# Actually no need for the attention mask as we gather the last token where attn_mask=1 but
# as some indices (which shouldn't be attended to) may be 0 due to clamp, use mask to ignore them again
input_mask_expanded = attention_mask.unsqueeze(-1).expand((b, n, d)).float()
return torch.gather(hidden_state * input_mask_expanded, 1, gather_indices).squeeze(dim=1)
def print0(*args, **kwargs) -> None:
if get_rank() == 0:
print(*args, **kwargs)
def limit_layers(model: transformers.PreTrainedModel, n_layers: int) -> None:
if hasattr(model, 'transformer'):
if hasattr(model.transformer, 'h'):
# gpt2
model.transformer.h = model.transformer.h[:n_layers]
else:
model.transformer.layer = model.transformer.layer[:n_layers]
elif hasattr(model, 'encoder'):
if hasattr(model.encoder, 'layers'):
model.encoder.layers = model.encoder.layers[:n_layers]
else:
model.encoder.layer = model.encoder.layer[:n_layers]
else:
raise RuntimeError(f"unknown how to limit layers of model {type(model)}")
def disable_dropout(model: torch.nn.Module):
dropout_modules = [m for m in model.modules() if isinstance(m, torch.nn.Dropout)]
for m in dropout_modules:
m.p = 0.0
print0(
f"Disabled {len(dropout_modules)} dropout modules from model type {type(model)}"
)
def disable_causality(model: torch.nn.Module):
disabled_modules = 0
for m in model.modules():
if hasattr(m, "is_causal"):
m.is_causal = False
disabled_modules += 1
print0(
f"Set is_causal=False in {disabled_modules} modules from model type {type(model)}"
)
class ContextualModelMixin(nn.Module):
@property
def num_corpus_tokens(self) -> int:
return self.transductive_corpus_size * self.transductive_tokens_per_document
def contextual_init(self):
self.n_soft_prompt = 8
self.prompt_projection = torch.nn.Sequential(
torch.nn.Linear(self.hidden_size, self.hidden_size),
torch.nn.ReLU(),
torch.nn.Linear(self.hidden_size, self.hidden_size * self.n_soft_prompt)
)
self.transductive_corpus_size = vars(self.config).get("transductive_corpus_size", 1)
self.transductive_tokens_per_document = vars(self.config).get("transductive_tokens_per_document", 1)
self.randomize_dataset_sequence_order = True
self.sequence_dropout_prob = vars(self.config).get("transductive_sequence_dropout_prob", 0.0)
if self.sequence_dropout_prob > 0.0:
self.sequence_dropout_null_embedding = torch.nn.Parameter(
torch.randn(self.hidden_size) * 0.01,
requires_grad = True
)
self.output_projection = torch.nn.Sequential(
torch.nn.Linear(self.hidden_size, self.hidden_size),
torch.nn.ReLU(),
torch.nn.Linear(self.hidden_size, self.hidden_size)
)
def _prepare_dataset_embeddings(
self,
input_ids: torch.Tensor, dataset_embeddings: torch.Tensor,
null_dataset_embedding: bool = False,
) -> torch.Tensor:
if not isinstance(dataset_embeddings, torch.Tensor):
dataset_embeddings = torch.tensor(dataset_embeddings)
if len(dataset_embeddings.shape) == 2:
# Auto-expand for a batch.
dataset_embeddings = dataset_embeddings[None, :, :] # (b, d) -> (1, b, d)
dataset_embeddings = dataset_embeddings.to(input_ids.device)
batch_size = input_ids.shape[0]
if (self.transductive_tokens_per_document > 1):
if self.training:
# Choose N random documents to fill our context window with.
# This logic is a little confusing but allows us to sample a
# different batch *per-document*
assert dataset_embeddings.shape[1] == self.transductive_tokens_per_document
R = torch.randint(
low=0,
high=len(dataset_embeddings),
size=(batch_size, self.config.transductive_corpus_size),
device=dataset_embeddings.device
)
# TODO make this deterministic somehow for evaluation?
dataset_embeddings = dataset_embeddings[R].reshape((batch_size, self.num_corpus_tokens, self.hidden_size))
else:
dataset_embeddings = dataset_embeddings.reshape((1, self.num_corpus_tokens, self.hidden_size))
# print("reshaped to dataset_embeddings.shape =", dataset_embeddings.shape)
if dataset_embeddings.shape[1] > self.num_corpus_tokens:
# If too many dataset embeddings are passed in, just take the first N until
# we have the proper number.
dataset_embeddings = dataset_embeddings[:, :self.num_corpus_tokens, :]
_, corpus_size, _hidden_size = dataset_embeddings.shape
if _ == 1:
# Auto-expand for a batch.
dataset_embeddings = dataset_embeddings.expand((batch_size, -1, -1))
if self.training and self.sequence_dropout_prob > 0.0:
sequence_dropout_mask = (
torch.rand((batch_size, corpus_size), device=dataset_embeddings.device) < self.sequence_dropout_prob
)
null_embeddings = self.sequence_dropout_null_embedding[None, None].expand(batch_size, corpus_size, -1)
dataset_embeddings = torch.where(
sequence_dropout_mask[..., None], null_embeddings, dataset_embeddings
)
elif null_dataset_embedding:
null_embeddings = self.sequence_dropout_null_embedding[None, None].expand(batch_size, corpus_size, -1)
dataset_embeddings = null_embeddings
# print(f"[ContextualModelMixin] dataset_embeddings.shape = {dataset_embeddings.shape}")
# backbone_max_seq_length = self.backbone.config.max_trained_positions
# assert batch_size + (2 * self.n_soft_prompt + corpus_size) <= backbone_max_seq_length, "too many hard negatives for backbone model"
soft_prompt = torch.ones((1, self.hidden_size), device=dataset_embeddings.device, dtype=dataset_embeddings.dtype)
soft_prompt = self.prompt_projection(soft_prompt).reshape((1, self.n_soft_prompt, self.hidden_size))
soft_prompt = soft_prompt.expand((len(dataset_embeddings), -1, -1)) # -> (b, 4+b, d) # soft_prompt.repeat((len(input_ids), 1, 1))
soft_prompt = torch.cat((dataset_embeddings, soft_prompt), dim=1)
# print(f"[ContextualModelMixin] soft_prompt.shape = {soft_prompt.shape}")
if self.training and self.randomize_dataset_sequence_order:
randomized_order = torch.stack(
[
torch.cat(
(
torch.randperm(corpus_size, device=soft_prompt.device),
torch.arange(self.n_soft_prompt, device=soft_prompt.device) + corpus_size
), dim=0)
for _ in range(batch_size)])
randomized_order = randomized_order.to(soft_prompt.device)
soft_prompt = soft_prompt.gather(1, randomized_order[..., None].expand_as(soft_prompt))
return soft_prompt
class BiEncoder(transformers.PreTrainedModel):
embedder: transformers.PreTrainedModel
def __init__(
self,
config, #: transformers.PreTrainedConfig,
):
super().__init__(config=config)
embedder, _ = load_embedder_and_tokenizer(
config.embedder,
)
if config.limit_layers:
print0(f"Limiting layers to {config.limit_layers}")
limit_layers(embedder, config.limit_layers)
self.embedder = embedder
# if ("t5" in embedder.config.model_type):
# print0(f"using torch.compile() on embedder of type `{embedder.config.model_type}`")
# self.embedder = torch.compile(self.embedder)
self.hidden_size = self.embedder.config.hidden_size
# Allow pooling to multiple tokens per document
self.transductive_tokens_per_document = vars(self.config).get("transductive_tokens_per_document", 1)
self.mlp = torch.nn.Sequential(
torch.nn.Linear(self.hidden_size, self.hidden_size),
torch.nn.GELU(),
torch.nn.Linear(self.hidden_size, self.config.embedding_output_dim or self.hidden_size),
)
self.temp = config.logit_scale
if config.disable_dropout:
disable_dropout(self)
self.pooling_strategy = vars(config).get("pooling_strategy", "mean")
def forward(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
dataset_input_ids: Optional[torch.Tensor] = None,
dataset_attention_mask: Optional[torch.Tensor] = None,
token_type_ids = None,
output_hidden_states: bool = False,
) -> torch.Tensor:
"""
query_embedding (float torch.Tensor) - shape (batch_size, embedding_dim)
document_embeddings (float torch.Tensor) - shape (corpus_size, embedding_dim)
where the corpus_size >= batch_size and is structured like this:
[d1, d2, d3, hn1_1, hn1_2, hn2_1, hn2_2, hn3_1, hn3_2]
for a corpus with three documents and two hard negatives per document
"""
# del dataset_input_ids
# del dataset_attention_mask
del token_type_ids
# from cde.lib.dist import get_rank
# tokenizer = transformers.AutoTokenizer.from_pretrained("bert-base-uncased")
# if get_rank() == 0:
# breakpoint()
# torch.distributed.barrier()
outputs = (
self.embedder(
input_ids=input_ids,
attention_mask=attention_mask,
).last_hidden_state
)
if self.transductive_tokens_per_document > 1:
document_embeddings = None
batch_size, seq_length, output_dim = outputs.shape
if seq_length % self.transductive_tokens_per_document != 0:
# Pad to nearest multiple
n_extra_embeds = self.transductive_tokens_per_document - (seq_length % self.transductive_tokens_per_document)
outputs = torch.cat(
(outputs, torch.zeros((batch_size, n_extra_embeds, output_dim), device=outputs.device)),
dim=1
)
attention_mask = torch.cat(
(attention_mask, torch.zeros((batch_size, n_extra_embeds), device=attention_mask.device)),
dim=1
)
seq_length += n_extra_embeds
print(f"Added {n_extra_embeds} padding tokens to input_ids and attention_mask")
# print("ftransductive_tokens_per_document {self.transductive_tokens_per_document} outputs.shape =", outputs.shape)
outputs = outputs.reshape(
(batch_size, self.transductive_tokens_per_document, seq_length // self.transductive_tokens_per_document, output_dim)
)
attention_mask = attention_mask.reshape((batch_size, self.transductive_tokens_per_document, -1))
document_embeddings = mean_pool_3d(outputs, attention_mask)
document_embeddings = document_embeddings.reshape((batch_size, self.transductive_tokens_per_document, output_dim))
else:
if self.pooling_strategy == "mean":
document_embeddings = mean_pool(outputs, attention_mask)
else:
document_embeddings = document_embeddings.max(dim=1)
output = self.mlp(document_embeddings)
if output_hidden_states:
return {
"hidden_states": outputs,
"pooled": output,
}
else:
return output
class DatasetConditionedAutoregressive(transformers.PreTrainedModel, ContextualModelMixin):
def __init__(
self,
config,
dataset_backbone: transformers.PreTrainedModel,
first_stage_hidden_size: int,
):
super().__init__(config=config)
self.backbone = dataset_backbone
self.backbone_hidden_size = self.backbone.config.hidden_size
self.hidden_size = first_stage_hidden_size # Input token size
self.contextual_init()
disable_causality(self.backbone)
self.input_ln = torch.nn.LayerNorm(
self.backbone_hidden_size,
eps=1e-5
)
# Override contextual init
self.output_projection = torch.nn.Sequential(
torch.nn.Linear(self.backbone_hidden_size, self.backbone_hidden_size),
torch.nn.ReLU(),
torch.nn.Linear(self.backbone_hidden_size, self.backbone_hidden_size)
)
self._shift_rotary_embedding()
@property
def num_corpus_tokens(self) -> int:
return self.config.transductive_corpus_size * self.transductive_tokens_per_document
@property
def corpus_token_ratio(self) -> float:
# How many tokens from the first stage make one token in the second
# stage?
return self.backbone_hidden_size / self.hidden_size
def corpus_token_pad_size(self, n_tokens: int) -> int:
return self.hidden_size % self.backbone_hidden_size
def _shift_rotary_embedding(self) -> None:
disable_transductive_rotary_embedding = vars(self.config).get("disable_transductive_rotary_embedding", True)
# TODO: Can we do this for LLAMA?
print("Warning: Positional embedding disabling not implemented for LLAMA.")
def forward(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
dataset_embeddings: torch.Tensor,
output_hidden_states: bool = False,
null_dataset_embedding: bool = False,
) -> torch.Tensor:
soft_prompt = self._prepare_dataset_embeddings(
input_ids=input_ids,
dataset_embeddings=dataset_embeddings,
null_dataset_embedding=null_dataset_embedding,
)
# Reshape for this model.
# print("[DatasetConditionedAutoregressive] 1 -> soft_prompt.shape =", soft_prompt.shape)
num_soft_elements = torch.prod(torch.tensor(soft_prompt.shape[1:])).item()
soft_prompt = soft_prompt.reshape((soft_prompt.shape[0], num_soft_elements))
num_padding_elements = self.backbone_hidden_size - (num_soft_elements % self.backbone_hidden_size)
padding = torch.ones((soft_prompt.shape[0], num_padding_elements), device=soft_prompt.device)
soft_prompt = torch.cat((soft_prompt, padding), dim=1)
soft_prompt = soft_prompt.reshape(
(soft_prompt.shape[0], -1, self.backbone_hidden_size)
)
soft_prompt = self.input_ln(soft_prompt)
# print("[DatasetConditionedAutoregressive] 2 -> soft_prompt.shape =", soft_prompt.shape)
backbone_attention_mask = torch.ones(
soft_prompt.shape[0:2],
dtype=torch.long,
device=soft_prompt.device,
)
token_embeddings = self.backbone.get_input_embeddings()
inputs_embeds = token_embeddings(input_ids) # (b, s) -> (b, s, d)
# print("[2] inputs_embeds.shape =", inputs_embeds.shape)
inputs_embeds = torch.cat((soft_prompt, inputs_embeds), dim=1) # (v, 4+b+s, d)
# print("[3.a] inputs_embeds.shape =", inputs_embeds.shape)
input_attention_mask = torch.cat((backbone_attention_mask, attention_mask), dim=1)
# print("[3.b] attention_mask.shape =", attention_mask.shape)
output = self.backbone(
inputs_embeds=inputs_embeds,
attention_mask=input_attention_mask,
output_hidden_states=True,
) # (1, 4 + b + s, d)
# trim soft prompt
last_hidden_state = output.hidden_states[-1]
n_soft_prompt_tokens = soft_prompt.shape[1]
output_vectors = last_hidden_state[:, n_soft_prompt_tokens:, :]
output_attention_mask = input_attention_mask[:, n_soft_prompt_tokens:]
# Take last token position
if vars(self.config).get("pooling_strategy") == "last_token":
output_pooled = last_token_pool(output_vectors, output_attention_mask)
elif vars(self.config).get("pooling_strategy") == "mean":
output_pooled = mean_pool(output_vectors, output_attention_mask)
else:
output_pooled = mean_pool_weighted(output_vectors, output_attention_mask)
# average with original vectors
# TODO: Argparse for pooling strategy.
output = self.output_projection(output_pooled) # (b, 2d) -> (b, d)
if output_hidden_states:
return {
"hidden_states": output_vectors,
"pooled": output,
}
else:
return output
class DatasetConditionedBiencoder(transformers.PreTrainedModel, ContextualModelMixin):
def __init__(
self,
config,
dataset_backbone: transformers.PreTrainedModel,
):
super().__init__(config=config)
self.backbone = dataset_backbone
self.hidden_size = self.backbone.config.hidden_size
self.hidden_size = dataset_backbone.config.hidden_size
# self.input_ln = torch.nn.LayerNorm(
# self.hidden_size,
# eps=self.backbone.config.layer_norm_epsilon
# )
self.contextual_init()
self._shift_rotary_embedding()
@property
def num_corpus_tokens(self) -> int:
return self.config.transductive_corpus_size * self.transductive_tokens_per_document
def _shift_rotary_embedding(self) -> None:
disable_transductive_rotary_embedding = vars(self.config).get("disable_transductive_rotary_embedding", True)
if self.backbone.config.model_type.startswith("nomic") and disable_transductive_rotary_embedding:
# We only want to apply positional embeddings to the
# *text* portion of the backbone network.
self.backbone.config.rotary_start_pos = 0.0
rotary_disabled = 0
rotary_start_pos = self.num_corpus_tokens
for module in self.backbone.modules():
if hasattr(module, "rotary_emb_dim"):
module.rotary_start_pos = rotary_start_pos
rotary_disabled += 1
print0(f"modified {rotary_disabled} rotary modules – set rotary_start_pos to {rotary_start_pos}")
def forward(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
dataset_embeddings: torch.Tensor,
output_hidden_states: bool = False,
null_dataset_embedding: bool = False,
) -> torch.Tensor:
# print(f"[DatasetConditionedBiencoder - 0] input_ids.shape => {input_ids.shape} // dataset_embeddings.shape =", dataset_embeddings.shape)
soft_prompt = self._prepare_dataset_embeddings(
input_ids=input_ids,
dataset_embeddings=dataset_embeddings,
null_dataset_embedding=null_dataset_embedding,
)
# print(f"[DatasetConditionedBiencoder - 1] soft_prompt.shape => {soft_prompt.shape}")
backbone_attention_mask = torch.ones(
soft_prompt.shape[0:2],
dtype=torch.long,
device=soft_prompt.device,
)
inputs_embeds = self.backbone.embeddings(input_ids) # (b, s) -> (b, s, d)
# print("[2] inputs_embeds.shape =", inputs_embeds.shape)
inputs_embeds = torch.cat((soft_prompt, inputs_embeds), dim=1) # (v, 4+b+s, d)
# print("[3.a] inputs_embeds.shape =", inputs_embeds.shape)
attention_mask = torch.cat((backbone_attention_mask, attention_mask), dim=1)
# print("[3.b] attention_mask.shape =", attention_mask.shape)
output = self.backbone(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
) # (1, 4 + b + s, d)
# trim soft prompt
output_vectors = output.last_hidden_state
# use only these tokens
n_soft_prompt_tokens = soft_prompt.shape[1]
# print("n_soft_prompt_tokens =", n_soft_prompt_tokens)
output_vectors = output.last_hidden_state[:, n_soft_prompt_tokens:, :]
output_attention_mask = attention_mask[:, n_soft_prompt_tokens:]
# print("pooling output_vectors.shape =", output_vectors.shape, "and output_attention_mask.shape =", output_attention_mask.shape)
output_pooled = mean_pool(output_vectors, output_attention_mask)
# average with original vectors
# TODO: Argparse for pooling strategy.
# output_vectors = torch.cat((soft_prompt_pooled, output_pooled), dim=1) # (b, d) + (b, d) -> (b, 2d)
# print("output_pooled.shape =", output_pooled.shape)
output = self.output_projection(output_pooled) # (b, 2d) -> (b, d)
# print("returning output.shape =", output.shape)
if output_hidden_states:
return {
"hidden_states": output_vectors,
"pooled": output,
}
else:
return output
class DatasetPrefixBiencoder(transformers.PreTrainedModel, ContextualModelMixin):
def __init__(
self,
config, #: transformers.PreTrainedConfig,
embedder: transformers.PreTrainedModel,
):
super().__init__(config=config)
self.embedder = embedder
self.hidden_size = self.embedder.config.hidden_size
self.contextual_init()
def forward(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
dataset_input_ids: torch.Tensor,
dataset_attention_mask: torch.Tensor,
output_hidden_states: bool = False,
) -> torch.Tensor:
R = torch.randint(low=0, high=len(dataset_input_ids), size=(len(input_ids),), device=dataset_input_ids.device)
dataset_input_ids = dataset_input_ids[R]
input_ids = torch.cat((dataset_input_ids, input_ids), dim=1)
dataset_attention_mask = torch.ones_like(dataset_attention_mask, device=dataset_attention_mask.device)
input_attention_mask = torch.cat((dataset_attention_mask, attention_mask), dim=1)
output_attention_mask = torch.cat(
(torch.zeros_like(dataset_input_ids), attention_mask), dim=1
)
output = self.embedder(
input_ids=input_ids,
attention_mask=input_attention_mask,
)
output_vectors = output.last_hidden_state
output_pooled = mean_pool(output_vectors, output_attention_mask)
output = self.output_projection(output_pooled) # (b, 2d) -> (b, d)
if output_hidden_states:
S_d = dataset_attention_mask.shape[1]
output_vectors = output_vectors[:, S_d:, :]
return {
"hidden_states": output_vectors,
"pooled": output,
}
else:
return output
class ContextualDocumentEmbeddingTransformer(transformers.PreTrainedModel):
config_class = ContextualModelConfig
embedder: transformers.PreTrainedModel
dataset_backbone: transformers.PreTrainedModel
def __init__(
self,
config,
):
super().__init__(config=config)
dataset_backbone, _ = load_embedder_and_tokenizer(
vars(config).get("dataset_backbone") or config.embedder
)
if config.limit_layers:
print0(f"Limiting layers to {config.limit_layers}")
limit_layers(dataset_backbone, config.limit_layers)
biencoder_config = copy.deepcopy(config)
biencoder_config.embedding_output_dim = None
biencoder_config.limit_layers = vars(self.config).get("limit_layers_first_stage", None)
self.first_stage_model = BiEncoder(
config=biencoder_config,
)
if vars(config).get("autoregressive_backbone", False):
self.second_stage_model = DatasetConditionedAutoregressive(
config=config,
dataset_backbone=dataset_backbone,
first_stage_hidden_size=self.first_stage_model.hidden_size,
)
else:
self.second_stage_model = DatasetConditionedBiencoder(
config=config,
dataset_backbone=dataset_backbone
)
self.temp = config.logit_scale
if config.disable_dropout:
disable_dropout(self)
transductive_tie_token_embeddings = vars(self.config).get("transductive_tie_token_embeddings", False)
if transductive_tie_token_embeddings:
self.second_stage_model.backbone.embeddings.word_embeddings.weight = (
self.first_stage_model.embedder.embeddings.word_embeddings.weight
)
def forward(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
dataset_input_ids: Optional[torch.Tensor],
dataset_attention_mask: Optional[torch.Tensor],
output_hidden_states: bool = False,
) -> torch.Tensor:
"""
input_ids (long torch.Tensor) – ids of input tokens
attention_mask (bool torch.Tensor)
"""
dataset_embeddings = self.first_stage_model(
input_ids=dataset_input_ids,
attention_mask=dataset_attention_mask
)
return self.second_stage_model(
input_ids=input_ids,
attention_mask=attention_mask,
dataset_embeddings=dataset_embeddings,
output_hidden_states=output_hidden_states,
)
def get_model_class(name: str):
if name in 'transductive':
return ContextualDocumentEmbeddingTransformer
elif name == 'biencoder':
return BiEncoder
elif name == "dataset_prefix_biencoder":
return DatasetPrefixBiencoder
else:
raise ValueError(f'unknown model cls {name}')
|