File size: 8,240 Bytes
98f4308 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
# coding=utf-8
# [Apache-2.0] Modified from https://github.com/OFA-Sys/OFA
""" TiO model configuration"""
import warnings
from transformers import PretrainedConfig
class TiOConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`~TiOModel`]. It is used to instantiate an TiO
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the TiO.
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the TiO model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`~TiOModel`] or [`~TFTiOModel`].
d_model (`int`, *optional*, defaults to 1024):
Dimension of the layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 12):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
classifier_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for classifier.
max_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop: (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop: (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
"""
model_type = "tio"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(
self,
vocab_size=59457,
max_position_embeddings=1024,
encoder_layers=4,
encoder_ffn_dim=512 * 4,
encoder_attention_heads=8,
decoder_layers=4,
decoder_ffn_dim=512 * 4,
decoder_attention_heads=8,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
use_cache=True,
is_encoder_decoder=True,
activation_function="gelu",
d_model=512,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
classifier_dropout=0.0,
scale_embedding=False,
pad_token_id=1,
bos_token_id=0,
decoder_start_token_id=0,
eos_token_id=2,
forced_eos_token_id=2,
encoder_normalize_before=True,
decoder_normalize_before=True,
normformer=True,
encoder_drop_path_rate=0.0,
decoder_drop_path_rate=0.0,
layernorm_embedding=True,
patch_layernorm_embedding=True,
resnet_type="resnet101",
resnet_model_path=None,
resnet_drop_path_rate=0.0,
token_bucket_size=256,
image_bucket_size=42,
add_type_embedding=True,
share_decoder_input_output_embed=True,
attn_scale_factor=2.0,
code_layernorm_embedding=True,
code_image_size=128,
entangle_position_embedding=False,
label_smoothing=0.1,
**kwargs
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.classifier_dropout = classifier_dropout
self.use_cache = use_cache
self.num_hidden_layers = encoder_layers
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
self.encoder_normalize_before = encoder_normalize_before
self.decoder_normalize_before = decoder_normalize_before
self.normformer = normformer
self.encoder_drop_path_rate = encoder_drop_path_rate
self.decoder_drop_path_rate = decoder_drop_path_rate
self.layernorm_embedding = layernorm_embedding
self.patch_layernorm_embedding = patch_layernorm_embedding
self.resnet_type = resnet_type
self.resnet_model_path = resnet_model_path
self.resnet_drop_path_rate = resnet_drop_path_rate
self.token_bucket_size = token_bucket_size
self.image_bucket_size = image_bucket_size
self.add_type_embedding = add_type_embedding
self.share_decoder_input_output_embed = share_decoder_input_output_embed
self.attn_scale_factor = attn_scale_factor
self.code_layernorm_embedding = code_layernorm_embedding
self.code_image_size = code_image_size
self.entangle_position_embedding = entangle_position_embedding
self.label_smoothing = label_smoothing
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=bos_token_id,
forced_eos_token_id=forced_eos_token_id,
**kwargs,
)
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
self.forced_bos_token_id = self.bos_token_id
warnings.warn(
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
"The config can simply be saved and uploaded again to be fixed."
)
|