--- library_name: transformers language: - en inference: parameters: max_new_tokens: 64 do_sample: true temperature: 0.1 repetition_penalty: 10.0 no_repeat_ngram_size: 4 eta_cutoff: 0.0006 renormalize_logits: true widget: - text: My name is El Microondas the Wise, and example_title: El Microondas - text: Kennesaw State University is a public example_title: Kennesaw State University - text: >- Bungie Studios is an American video game developer. They are most famous for developing the award winning Halo series of video games. They also made Destiny. The studio was founded example_title: Bungie - text: The Mona Lisa is a world-renowned painting created by example_title: Mona Lisa - text: >- The Harry Potter series, written by J.K. Rowling, begins with the book titled example_title: Harry Potter Series - text: >- Question: I have cities, but no houses. I have mountains, but no trees. I have water, but no fish. What am I? Answer: example_title: Riddle - text: The process of photosynthesis involves the conversion of example_title: Photosynthesis - text: >- Jane went to the store to buy some groceries. She picked up apples, oranges, and a loaf of bread. When she got home, she realized she forgot example_title: Story Continuation - text: >- Problem 2: If a train leaves Station A at 9:00 AM and travels at 60 mph, and another train leaves Station B at 10:00 AM and travels at 80 mph, when will they meet if the distance between the stations is 300 miles? To determine example_title: Math Problem - text: In the context of computer programming, an algorithm is example_title: Algorithm Definition pipeline_tag: text-generation license: mit --- # Model Card for nano-phi-115M-v0.1 Inspired by [Phi2](https://huggingface.co/microsoft/phi-2), and open source small language model attempts like [smol_llama-101M-GQA](https://huggingface.co/BEE-spoke-data/smol_llama-101M-GQA). Pre-trained with training 7B token **from scratch**, with application of quality filter to datasets resulting in 0.26B token. The control is [kenhktsui/nano-phi-115M-control-v0.1](https://huggingface.co/kenhktsui/nano-phi-115M-control-v0.1), where full dataset (0.6B) is used. Not much degradation in performance despite only using **42%** of the data due to the effective quality filter. In fact, upon inspection, the 6000 steps chkpt achieves similar performance as this model, signaling underlying **effective training due to high quality data**. It just took 1d to train in Colab with a A100 40GB (**= 4.37.2 ``` pip install transformers>=4.37.2 ``` ``` # Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("text-generation", model="kenhktsui/nano-phi-115M-v0.1") pipe("I am a machine learning researcher. I work on", max_new_tokens=50, repetition_penalty=10.0) # [{'generated_text': 'I am a machine learning researcher. I work on the problem of finding patterns in data, and it is not easy to find them all at once!\nThe first step was searching for pattern matching algorithms that are used by many people who have never seen an algorithm before (or even if they do).'}] ``` ## Some metrics - model - hidden_size: 768 - num_key_value_heads: 8 (grouped query attention) - num_attention_heads: 24 - num_hidden_layers: 6 - context length: 1024 - total params: 115M - training: - global steps: 14,000 ## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) | Metric | kenhktsui/nano-phi-115M-v0.1|kenhktsui/nano-phi-115M-v0.1 (6000 steps)|[kenhktsui/nano-phi-115M-control-v0.1](https://huggingface.co/kenhktsui/nano-phi-115M-control-v0.1)|[microsoft/phi-2](https://huggingface.co/microsoft/phi-2)| |-----------------------|---------------------------|---------------------------|---------------------------|---------------------------| | Model Para | 115M |115M |115M |2.7B | | Dataset Size | 0.26B |0.26B |0.6B |250B | | Training Token | 7B |3B|7B |1.4T | | Context Length |1024 |1024|1024 |2048| | Device |1xA100-40G|1xA100-40G|1xA100-40G |96xA100-80G| | Training Time |2d4h |1d|2d4h |14d| | Metric | kenhktsui/nano-phi-115M-v0.1|kenhktsui/nano-phi-115M-v0.1 (6000 steps)|[kenhktsui/nano-phi-115M-control-v0.1](https://huggingface.co/kenhktsui/nano-phi-115M-control-v0.1)|[microsoft/phi-2](https://huggingface.co/microsoft/phi-2) (Reproduced)| |-----------------------|---------------------------|---------------------------|---------------------------|---------------------------| | Avg. | 28.68 |29.03 | 28.75 |61.53 | | ARC (25-shot) | 21.93 |22.27 | 21.67 |61.52 | | HellaSwag (10-shot) | 27.87 |26.88 | 26.89 |75.13 | | MMLU (5-shot) | 25.30 |25.01 | 24.76 |58.23 | | TruthfulQA (0-shot) | 46.01 |48.03 | 47.69 |44.46 | | Winogrande (5-shot) | 50.99 |52.01 | 51.46 |74.51 | | GSM8K (5-shot) | 0.0 |0.0 | 0.0 |55.34 | Details: hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/checkpoint-pegfss6f:v13,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 0, batch_size: 16 | Task |Version| Metric |Value | |Stderr| |--------|------:|--------|-----:|---|-----:| |arc_easy| 0|acc |0.4263|± |0.0101| | | |acc_norm|0.3864|± |0.0100| hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/checkpoint-pegfss6f:v13,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 25, batch_size: 16 | Task |Version| Metric |Value | |Stderr| |-------------|------:|--------|-----:|---|-----:| |arc_challenge| 0|acc |0.1826|± |0.0113| | | |acc_norm|0.2193|± |0.0121| hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/checkpoint-pegfss6f:v13,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 10, batch_size: 16 | Task |Version| Metric |Value | |Stderr| |---------|------:|--------|-----:|---|-----:| |hellaswag| 0|acc |0.2733|± |0.0044| | | |acc_norm|0.2787|± |0.0045| hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/checkpoint-pegfss6f:v13,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 0, batch_size: 16 | Task |Version|Metric|Value | |Stderr| |-------------|------:|------|-----:|---|-----:| |truthfulqa_mc| 1|mc1 |0.2521|± |0.0152| | | |mc2 |0.4601|± |0.0154| hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/checkpoint-pegfss6f:v13,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 5, batch_size: 16 | Task |Version| Metric |Value | |Stderr| |-------------------------------------------------|------:|--------|-----:|---|-----:| |hendrycksTest-abstract_algebra | 1|acc |0.2300|± |0.0423| | | |acc_norm|0.2300|± |0.0423| |hendrycksTest-anatomy | 1|acc |0.3111|± |0.0400| | | |acc_norm|0.3111|± |0.0400| |hendrycksTest-astronomy | 1|acc |0.2171|± |0.0336| | | |acc_norm|0.2171|± |0.0336| |hendrycksTest-business_ethics | 1|acc |0.2500|± |0.0435| | | |acc_norm|0.2500|± |0.0435| |hendrycksTest-clinical_knowledge | 1|acc |0.2226|± |0.0256| | | |acc_norm|0.2226|± |0.0256| |hendrycksTest-college_biology | 1|acc |0.2292|± |0.0351| | | |acc_norm|0.2292|± |0.0351| |hendrycksTest-college_chemistry | 1|acc |0.1700|± |0.0378| | | |acc_norm|0.1700|± |0.0378| |hendrycksTest-college_computer_science | 1|acc |0.2500|± |0.0435| | | |acc_norm|0.2500|± |0.0435| |hendrycksTest-college_mathematics | 1|acc |0.2500|± |0.0435| | | |acc_norm|0.2500|± |0.0435| |hendrycksTest-college_medicine | 1|acc |0.2023|± |0.0306| | | |acc_norm|0.2023|± |0.0306| |hendrycksTest-college_physics | 1|acc |0.3235|± |0.0466| | | |acc_norm|0.3235|± |0.0466| |hendrycksTest-computer_security | 1|acc |0.2600|± |0.0441| | | |acc_norm|0.2600|± |0.0441| |hendrycksTest-conceptual_physics | 1|acc |0.2511|± |0.0283| | | |acc_norm|0.2511|± |0.0283| |hendrycksTest-econometrics | 1|acc |0.2281|± |0.0395| | | |acc_norm|0.2281|± |0.0395| |hendrycksTest-electrical_engineering | 1|acc |0.2276|± |0.0349| | | |acc_norm|0.2276|± |0.0349| |hendrycksTest-elementary_mathematics | 1|acc |0.2460|± |0.0222| | | |acc_norm|0.2460|± |0.0222| |hendrycksTest-formal_logic | 1|acc |0.1508|± |0.0320| | | |acc_norm|0.1508|± |0.0320| |hendrycksTest-global_facts | 1|acc |0.3000|± |0.0461| | | |acc_norm|0.3000|± |0.0461| |hendrycksTest-high_school_biology | 1|acc |0.3387|± |0.0269| | | |acc_norm|0.3387|± |0.0269| |hendrycksTest-high_school_chemistry | 1|acc |0.2906|± |0.0319| | | |acc_norm|0.2906|± |0.0319| |hendrycksTest-high_school_computer_science | 1|acc |0.3100|± |0.0465| | | |acc_norm|0.3100|± |0.0465| |hendrycksTest-high_school_european_history | 1|acc |0.2182|± |0.0323| | | |acc_norm|0.2182|± |0.0323| |hendrycksTest-high_school_geography | 1|acc |0.3232|± |0.0333| | | |acc_norm|0.3232|± |0.0333| |hendrycksTest-high_school_government_and_politics| 1|acc |0.2021|± |0.0290| | | |acc_norm|0.2021|± |0.0290| |hendrycksTest-high_school_macroeconomics | 1|acc |0.2487|± |0.0219| | | |acc_norm|0.2487|± |0.0219| |hendrycksTest-high_school_mathematics | 1|acc |0.2741|± |0.0272| | | |acc_norm|0.2741|± |0.0272| |hendrycksTest-high_school_microeconomics | 1|acc |0.3319|± |0.0306| | | |acc_norm|0.3319|± |0.0306| |hendrycksTest-high_school_physics | 1|acc |0.3179|± |0.0380| | | |acc_norm|0.3179|± |0.0380| |hendrycksTest-high_school_psychology | 1|acc |0.2477|± |0.0185| | | |acc_norm|0.2477|± |0.0185| |hendrycksTest-high_school_statistics | 1|acc |0.4722|± |0.0340| | | |acc_norm|0.4722|± |0.0340| |hendrycksTest-high_school_us_history | 1|acc |0.2696|± |0.0311| | | |acc_norm|0.2696|± |0.0311| |hendrycksTest-high_school_world_history | 1|acc |0.2152|± |0.0268| | | |acc_norm|0.2152|± |0.0268| |hendrycksTest-human_aging | 1|acc |0.1973|± |0.0267| | | |acc_norm|0.1973|± |0.0267| |hendrycksTest-human_sexuality | 1|acc |0.2824|± |0.0395| | | |acc_norm|0.2824|± |0.0395| |hendrycksTest-international_law | 1|acc |0.2231|± |0.0380| | | |acc_norm|0.2231|± |0.0380| |hendrycksTest-jurisprudence | 1|acc |0.2222|± |0.0402| | | |acc_norm|0.2222|± |0.0402| |hendrycksTest-logical_fallacies | 1|acc |0.2822|± |0.0354| | | |acc_norm|0.2822|± |0.0354| |hendrycksTest-machine_learning | 1|acc |0.2768|± |0.0425| | | |acc_norm|0.2768|± |0.0425| |hendrycksTest-management | 1|acc |0.2039|± |0.0399| | | |acc_norm|0.2039|± |0.0399| |hendrycksTest-marketing | 1|acc |0.1966|± |0.0260| | | |acc_norm|0.1966|± |0.0260| |hendrycksTest-medical_genetics | 1|acc |0.2800|± |0.0451| | | |acc_norm|0.2800|± |0.0451| |hendrycksTest-miscellaneous | 1|acc |0.2746|± |0.0160| | | |acc_norm|0.2746|± |0.0160| |hendrycksTest-moral_disputes | 1|acc |0.2081|± |0.0219| | | |acc_norm|0.2081|± |0.0219| |hendrycksTest-moral_scenarios | 1|acc |0.2469|± |0.0144| | | |acc_norm|0.2469|± |0.0144| |hendrycksTest-nutrition | 1|acc |0.2647|± |0.0253| | | |acc_norm|0.2647|± |0.0253| |hendrycksTest-philosophy | 1|acc |0.1897|± |0.0223| | | |acc_norm|0.1897|± |0.0223| |hendrycksTest-prehistory | 1|acc |0.2377|± |0.0237| | | |acc_norm|0.2377|± |0.0237| |hendrycksTest-professional_accounting | 1|acc |0.2482|± |0.0258| | | |acc_norm|0.2482|± |0.0258| |hendrycksTest-professional_law | 1|acc |0.2464|± |0.0110| | | |acc_norm|0.2464|± |0.0110| |hendrycksTest-professional_medicine | 1|acc |0.4265|± |0.0300| | | |acc_norm|0.4265|± |0.0300| |hendrycksTest-professional_psychology | 1|acc |0.2614|± |0.0178| | | |acc_norm|0.2614|± |0.0178| |hendrycksTest-public_relations | 1|acc |0.1818|± |0.0369| | | |acc_norm|0.1818|± |0.0369| |hendrycksTest-security_studies | 1|acc |0.1959|± |0.0254| | | |acc_norm|0.1959|± |0.0254| |hendrycksTest-sociology | 1|acc |0.2289|± |0.0297| | | |acc_norm|0.2289|± |0.0297| |hendrycksTest-us_foreign_policy | 1|acc |0.2400|± |0.0429| | | |acc_norm|0.2400|± |0.0429| |hendrycksTest-virology | 1|acc |0.2048|± |0.0314| | | |acc_norm|0.2048|± |0.0314| |hendrycksTest-world_religions | 1|acc |0.2222|± |0.0319| | | |acc_norm|0.2222|± |0.0319| hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/checkpoint-pegfss6f:v13,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 5, batch_size: 16 | Task |Version|Metric|Value | |Stderr| |----------|------:|------|-----:|---|-----:| |winogrande| 0|acc |0.5099|± | 0.014| hf-causal-experimental (pretrained=/content/lm-evaluation-harness/artifacts/checkpoint-pegfss6f:v13,use_accelerate=false,trust_remote_code=True), limit: None, provide_description: False, num_fewshot: 5, batch_size: 16 | Task |Version|Metric|Value | |Stderr| |----------|------:|------|-----:|---|-----:| |gsm8k | 0|acc | 0.0|± | 0.0| ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]