File size: 5,962 Bytes
355ab19
 
 
 
 
 
 
1d3ab49
1a5f3d0
 
 
 
355ab19
 
1a5f3d0
 
 
355ab19
1a5f3d0
 
c46a860
355ab19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a5f3d0
355ab19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a5f3d0
 
355ab19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a5f3d0
 
 
 
 
 
355ab19
1a5f3d0
355ab19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a5f3d0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
license: apache-2.0
datasets:
- language-and-voice-lab/ruquad1
language:
- is
---

# sbert-ruquad

sbert-ruquald is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

The model is based on the [distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2), fine-tuned on [RUQuAD](https://repository.clarin.is/repository/xmlui/handle/20.500.12537/310) - a question-answer dataset for Icelandic.

The data used for this model contains approximately question-span and question-paragraph pairs, with 14920 pairs used for training under the [MultipleNegativesRankingLoss](https://www.sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss).


## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('language-and-voice-lab/sbert-ruquad')
embeddings = model.encode(sentences)
print(embeddings)
```

## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('language-and-voice-lab/sbert-ruquad')
model = AutoModel.from_pretrained('language-and-voice-lab/sbert-ruquad')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```



## Evaluation Results

The model was evaluated with a hold-out set from the original data using the [BinaryClassificationEvaluator](https://www.sbert.net/docs/package_reference/evaluation.html?highlight=binaryclassificationevaluator#sentence_transformers.evaluation.BinaryClassificationEvaluator) approach. 

| cossim_accuracy | cossim_f1   | cossim_precision | cossim_recall | cossim_ap   | manhattan_accuracy | manhattan_f1 | manhattan_precision | manhattan_recall | manhattan_ap | euclidean_accuracy | euclidean_f1 | euclidean_precision | euclidean_recall | euclidean_ap | dot_accuracy | dot_f1      | dot_precision | dot_recall  | dot_ap      |
|-----------------|-------------|------------------|---------------|-------------|--------------------|--------------|---------------------|------------------|--------------|--------------------|--------------|---------------------|------------------|--------------|--------------|-------------|---------------|-------------|-------------|
| 0.913616792     | 0.910709318 | 0.942429476      | 0.881054898   | 0.968807199 | 0.869483315        | 0.856401384  | 0.922360248         | 0.799246502      | 0.932638132  | 0.869214209        | 0.857062937  | 0.892253931         | 0.824542519      | 0.932737722  | 0.914962325  | 0.911732456 | 0.929050279   | 0.895048439 | 0.968732732 |


For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name="language-and-voice-lab/sbert-ruquad")


## Training
The model was trained with the parameters:

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 933 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```

**Loss**:

`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
  ```
  {'scale': 20.0, 'similarity_fct': 'cos_sim'}
  ```

Parameters of the fit()-Method:
```
{
    "epochs": 20,
    "evaluation_steps": 500,
    "evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 1000,
    "weight_decay": 0.01
}
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```

## Citing & Authors

Stefán Ólafsson ([email protected]) trained the model.
Njáll Skarphéðinsson et al. created the [RUQuAD dataset](https://repository.clarin.is/repository/xmlui/handle/20.500.12537/310).