File size: 5,962 Bytes
355ab19 1d3ab49 1a5f3d0 355ab19 1a5f3d0 355ab19 1a5f3d0 c46a860 355ab19 1a5f3d0 355ab19 1a5f3d0 355ab19 1a5f3d0 355ab19 1a5f3d0 355ab19 1a5f3d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
license: apache-2.0
datasets:
- language-and-voice-lab/ruquad1
language:
- is
---
# sbert-ruquad
sbert-ruquald is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
The model is based on the [distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2), fine-tuned on [RUQuAD](https://repository.clarin.is/repository/xmlui/handle/20.500.12537/310) - a question-answer dataset for Icelandic.
The data used for this model contains approximately question-span and question-paragraph pairs, with 14920 pairs used for training under the [MultipleNegativesRankingLoss](https://www.sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss).
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('language-and-voice-lab/sbert-ruquad')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('language-and-voice-lab/sbert-ruquad')
model = AutoModel.from_pretrained('language-and-voice-lab/sbert-ruquad')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
The model was evaluated with a hold-out set from the original data using the [BinaryClassificationEvaluator](https://www.sbert.net/docs/package_reference/evaluation.html?highlight=binaryclassificationevaluator#sentence_transformers.evaluation.BinaryClassificationEvaluator) approach.
| cossim_accuracy | cossim_f1 | cossim_precision | cossim_recall | cossim_ap | manhattan_accuracy | manhattan_f1 | manhattan_precision | manhattan_recall | manhattan_ap | euclidean_accuracy | euclidean_f1 | euclidean_precision | euclidean_recall | euclidean_ap | dot_accuracy | dot_f1 | dot_precision | dot_recall | dot_ap |
|-----------------|-------------|------------------|---------------|-------------|--------------------|--------------|---------------------|------------------|--------------|--------------------|--------------|---------------------|------------------|--------------|--------------|-------------|---------------|-------------|-------------|
| 0.913616792 | 0.910709318 | 0.942429476 | 0.881054898 | 0.968807199 | 0.869483315 | 0.856401384 | 0.922360248 | 0.799246502 | 0.932638132 | 0.869214209 | 0.857062937 | 0.892253931 | 0.824542519 | 0.932737722 | 0.914962325 | 0.911732456 | 0.929050279 | 0.895048439 | 0.968732732 |
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name="language-and-voice-lab/sbert-ruquad")
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 933 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
```
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
```
Parameters of the fit()-Method:
```
{
"epochs": 20,
"evaluation_steps": 500,
"evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 1000,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
Stefán Ólafsson ([email protected]) trained the model.
Njáll Skarphéðinsson et al. created the [RUQuAD dataset](https://repository.clarin.is/repository/xmlui/handle/20.500.12537/310). |