--- language: - pt license: apache-2.0 tags: - generated_from_trainer - pt model-index: - name: WavLM-large-CORAA-pt results: [] --- # WavLM-large-CORAA-pt This model is a fine-tuned version of [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) on [CORAA dataset](https://github.com/nilc-nlp/CORAA). It achieves the following results on the evaluation set: - Loss: 0.6144 - Wer: 0.3840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 40000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 0.04 | 1000 | 1.9230 | 0.9960 | | 5.153 | 0.08 | 2000 | 1.3733 | 0.8444 | | 5.153 | 0.13 | 3000 | 1.1992 | 0.7362 | | 1.367 | 0.17 | 4000 | 1.1289 | 0.6957 | | 1.367 | 0.21 | 5000 | 1.0357 | 0.6470 | | 1.1824 | 0.25 | 6000 | 1.0216 | 0.6201 | | 1.1824 | 0.29 | 7000 | 0.9338 | 0.6036 | | 1.097 | 0.33 | 8000 | 0.9149 | 0.5760 | | 1.097 | 0.38 | 9000 | 0.8885 | 0.5541 | | 1.0254 | 0.42 | 10000 | 0.8678 | 0.5366 | | 1.0254 | 0.46 | 11000 | 0.8349 | 0.5323 | | 0.9782 | 0.5 | 12000 | 0.8230 | 0.5155 | | 0.9782 | 0.54 | 13000 | 0.8245 | 0.5049 | | 0.9448 | 0.59 | 14000 | 0.7802 | 0.4990 | | 0.9448 | 0.63 | 15000 | 0.7650 | 0.4900 | | 0.9092 | 0.67 | 16000 | 0.7665 | 0.4796 | | 0.9092 | 0.71 | 17000 | 0.7568 | 0.4795 | | 0.8764 | 0.75 | 18000 | 0.7403 | 0.4615 | | 0.8764 | 0.8 | 19000 | 0.7219 | 0.4644 | | 0.8498 | 0.84 | 20000 | 0.7180 | 0.4502 | | 0.8498 | 0.88 | 21000 | 0.7017 | 0.4436 | | 0.8278 | 0.92 | 22000 | 0.6992 | 0.4395 | | 0.8278 | 0.96 | 23000 | 0.7021 | 0.4329 | | 0.8077 | 1.0 | 24000 | 0.6892 | 0.4265 | | 0.8077 | 1.05 | 25000 | 0.6940 | 0.4248 | | 0.7486 | 1.09 | 26000 | 0.6767 | 0.4202 | | 0.7486 | 1.13 | 27000 | 0.6734 | 0.4150 | | 0.7459 | 1.17 | 28000 | 0.6650 | 0.4152 | | 0.7459 | 1.21 | 29000 | 0.6559 | 0.4078 | | 0.7304 | 1.26 | 30000 | 0.6536 | 0.4088 | | 0.7304 | 1.3 | 31000 | 0.6537 | 0.4025 | | 0.7183 | 1.34 | 32000 | 0.6462 | 0.4008 | | 0.7183 | 1.38 | 33000 | 0.6381 | 0.3973 | | 0.7059 | 1.42 | 34000 | 0.6266 | 0.3930 | | 0.7059 | 1.46 | 35000 | 0.6280 | 0.3921 | | 0.6983 | 1.51 | 36000 | 0.6248 | 0.3897 | | 0.6983 | 1.55 | 37000 | 0.6275 | 0.3872 | | 0.6892 | 1.59 | 38000 | 0.6199 | 0.3852 | | 0.6892 | 1.63 | 39000 | 0.6180 | 0.3842 | | 0.691 | 1.67 | 40000 | 0.6144 | 0.3840 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0