Image-Text-to-Text
sentence-transformers
Safetensors
Transformers
qwen2_vl
Qwen2-VL
conversational
vdr-2b-multi-v1 / custom_st.py
cheesyFishes's picture
add load method, improve image processing to support URLS etc.
fdba9e3 verified
raw
history blame
8.34 kB
import base64
import json
import os
import math
from io import BytesIO
from typing import Any, Dict, List, Literal, Optional, Union
import requests
import torch
from PIL import Image
from torch import nn
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration, AutoConfig
class Transformer(nn.Module):
save_in_root: bool = True
def __init__(
self,
model_name_or_path: str = 'llamaindex/vdr-2b-multi-v1',
processor_name_or_path: Optional[str] = None,
max_pixels: int = 768 * 28 * 28,
min_pixels: int = 1 * 28 * 28,
dimension: int = 2048,
cache_dir: Optional[str] = None,
device: str = 'cuda:0',
config_args: Optional[Dict[str, Any]] = None,
model_args: Optional[Dict[str, Any]] = None,
processor_args: Optional[Dict[str, Any]] = None,
**kwargs,
) -> None:
super(Transformer, self).__init__()
self.device = device
self.dimension = dimension
self.max_pixels = max_pixels
self.min_pixels = min_pixels
self.model_name_or_path = model_name_or_path
self.processor_name_or_path = processor_name_or_path or model_name_or_path
self.cache_dir = cache_dir
self.config_args = config_args or {}
self.model_args = model_args or {}
self.processor_args = processor_args or {}
self.document_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>"
self.query_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>"
@classmethod
def load(cls, input_path: str) -> 'Transformer':
config_path = os.path.join(input_path, 'config.json')
if os.path.exists(config_path):
with open(config_path) as f:
config = json.load(f)
else:
config = {}
instance = cls(model_name_or_path=input_path, **config)
# Load model with flash attention if available
try:
instance.model = Qwen2VLForConditionalGeneration.from_pretrained(
input_path,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
device_map=instance.device,
cache_dir=instance.cache_dir,
**instance.model_args
).eval()
except (ImportError, ValueError) as e:
print(f"Flash attention not available, falling back to default attention: {e}")
instance.model = Qwen2VLForConditionalGeneration.from_pretrained(
input_path,
torch_dtype=torch.bfloat16,
device_map=instance.device,
cache_dir=instance.cache_dir,
**instance.model_args
).eval()
# Initialize processor
instance.processor = AutoProcessor.from_pretrained(
input_path,
min_pixels=instance.min_pixels,
max_pixels=instance.max_pixels,
cache_dir=instance.cache_dir,
**instance.processor_args
)
instance.model.padding_side = "left"
instance.processor.tokenizer.padding_side = "left"
return instance
def _smart_resize(self, height: int, width: int) -> tuple[int, int]:
h_bar = max(28, self._round_by_factor(height, 28))
w_bar = max(28, self._round_by_factor(width, 28))
if h_bar * w_bar > self.max_pixels:
beta = math.sqrt((height * width) / self.max_pixels)
h_bar = self._floor_by_factor(height / beta, 28)
w_bar = self._floor_by_factor(width / beta, 28)
elif h_bar * w_bar < self.min_pixels:
beta = math.sqrt(self.min_pixels / (height * width))
h_bar = self._ceil_by_factor(height * beta, 28)
w_bar = self._ceil_by_factor(width * beta, 28)
return w_bar, h_bar
@staticmethod
def _round_by_factor(number: float, factor: int) -> int:
return round(number / factor) * factor
@staticmethod
def _ceil_by_factor(number: float, factor: int) -> int:
return math.ceil(number / factor) * factor
@staticmethod
def _floor_by_factor(number: float, factor: int) -> int:
return math.floor(number / factor) * factor
def _resize_image(self, image: Image.Image) -> Image.Image:
new_size = self._smart_resize(image.height, image.width)
return image.resize(new_size)
@staticmethod
def _decode_data_image(data_image_str: str) -> Image.Image:
header, data = data_image_str.split(',', 1)
image_data = base64.b64decode(data)
return Image.open(BytesIO(image_data))
def _process_input(self, texts: List[Union[str, Image.Image]]) -> tuple[List[str], List[Image.Image]]:
processed_texts = []
processed_images = []
dummy_image = Image.new('RGB', (56, 56))
for sample in texts:
if isinstance(sample, str):
if sample.startswith('http') or sample.startswith('data:image/'):
try:
if sample.startswith('http'):
response = requests.get(sample)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = self._decode_data_image(sample).convert('RGB')
processed_texts.append(self.document_prompt)
processed_images.append(self._resize_image(image))
except Exception as e:
processed_texts.append(self.query_prompt % sample)
processed_images.append(dummy_image)
else:
processed_texts.append(self.query_prompt % sample)
processed_images.append(dummy_image)
elif isinstance(sample, Image.Image):
processed_texts.append(self.document_prompt)
processed_images.append(self._resize_image(sample))
return processed_texts, processed_images
def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
cache_position = torch.arange(0, features['input_ids'].shape[0])
inputs = self.model.prepare_inputs_for_generation(
**features, cache_position=cache_position, use_cache=False
)
with torch.no_grad():
output = self.model(
**inputs,
return_dict=True,
output_hidden_states=True
)
embeddings = output.hidden_states[-1][:, -1]
features['sentence_embedding'] = torch.nn.functional.normalize(
embeddings[:, :self.dimension], p=2, dim=-1
)
return features
def tokenize(self, texts: List[Union[str, Image.Image]], padding: str = 'longest') -> Dict[str, torch.Tensor]:
processed_texts, processed_images = self._process_input(texts)
inputs = self.processor(
text=processed_texts,
images=processed_images,
videos=None,
padding=padding,
return_tensors='pt'
)
return {k: v.to(self.device) for k, v in inputs.items()}
def save(self, output_path: str, safe_serialization: bool = True) -> None:
# Save the configuration
config = {
'model_name_or_path': self.model_name_or_path,
'processor_name_or_path': self.processor_name_or_path,
'max_pixels': self.max_pixels,
'min_pixels': self.min_pixels,
'dimension': self.dimension,
'config_args': self.config_args,
'model_args': self.model_args,
'processor_args': self.processor_args,
}
os.makedirs(output_path, exist_ok=True)
with open(os.path.join(output_path, 'config.json'), 'w') as f:
json.dump(config, f)
self.model.save_pretrained(output_path, safe_serialization=safe_serialization)
self.processor.save_pretrained(output_path)