File size: 7,959 Bytes
bbfaa75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
---
license: apache-2.0
language:
- en
base_model:
- MrLight/dse-qwen2-2b-mrl-v1
tags:
- transformers
- Qwen2-VL
---
# vdr-2b-v1
![](cover.png)
vdr-2b-v1 is an english only embedding model designed for visual document retrieval. This model is designed to encode document page screenshots into dense single-vector representations, this will effectively allow to search and query visually rich documents without the need for any OCR, data extraction pipelines, chunking...
- **Trained on the 🇬🇧 English vdr-multi-train subset:** extensive training dataset of 100k high-quality english samples.
- **Low VRAM and Faster Inference**: achieves better results on synthetic Vidore benchmarks with just 30% of the base model image resolution. This results in 3x faster inference and much lower VRAM usage.
- **Matryoshka Representation Learning**: You can reduce the vectors size 3x and still keep 98% of the embeddings quality.
The multilingual version is available [here](https://huggingface.co/llamaindex/vdr-2b-multi-v1). To know more about both models, read the [announcement blogpost](https://huggingface.co/blog/marco/vdr-2b-multilingual).
# Usage
**Initialize model and processor**
```python
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
from PIL import Image
import torch
import math
# more pixels -> better embeddings -> more VRAM -> slower inference
# From my experience, 768 image patches is the right spot for compute efficient embeddings.
max_pixels = 768 * 28 * 28
min_pixels = 1 * 28 * 28
# Load the embedding model and processor
model = Qwen2VLForConditionalGeneration.from_pretrained(
'llamaindex/vdr-2b-v1',
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
device_map="cuda:0"
).eval()
processor = AutoProcessor.from_pretrained(
'llamaindex/vdr-2b-v1',
min_pixels=min_pixels,
max_pixels=max_pixels
)
model.padding_side = "left"
processor.tokenizer.padding_side = "left"
document_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>"
query_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>"
```
**Encode queries**
```python
def encode_queries(queries: list[str], dimension: int) -> torch.Tensor:
"""
Encode a list of queries into a tensor of embeddings.
Args:
queries: A list of strings, each representing a query.
dimension: The desired dimension of the output embeddings.
Returns:
A tensor of shape (num_queries, dimension) containing the encoded queries.
"""
dummy_image = Image.new('RGB', (56, 56))
inputs = processor(
text=[query_prompt % x for x in queries],
images=[dummy_image for _ in queries],
videos=None,
padding='longest',
return_tensors='pt'
).to('cuda:0')
cache_position = torch.arange(0, len(queries))
inputs = model.prepare_inputs_for_generation(
**inputs, cache_position=cache_position, use_cache=False)
with torch.no_grad():
output = self.model(
**inputs,
return_dict=True,
output_hidden_states=True
)
embeddings = output.hidden_states[-1][:, -1]
return torch.nn.functional.normalize(embeddings[:, :dimension], p=2, dim=-1)
```
**Encode documents**
```python
def round_by_factor(number: float, factor: int) -> int:
return round(number / factor) * factor
def ceil_by_factor(number: float, factor: int) -> int:
return math.ceil(number / factor) * factor
def floor_by_factor(number: float, factor: int) -> int:
return math.floor(number / factor) * factor
def smart_resize(height: int, width: int) -> tuple[int, int]:
h_bar = max(28, round_by_factor(height, 28))
w_bar = max(28, round_by_factor(width, 28))
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = floor_by_factor(height / beta, 28)
w_bar = floor_by_factor(width / beta, 28)
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = ceil_by_factor(height * beta, 28)
w_bar = ceil_by_factor(width * beta, 28)
return w_bar, h_bar
def resize(image: Image.Image):
new_size = smart_resize(image.height, image.width)
return image.resize(new_size)
def encode_documents(documents: list[Image.Image], dimension: int):
"""
Encode a list of images into a tensor of embeddings.
Args:
documents: A list of PIL Image objects.
dimension: The desired dimension of the output embeddings.
Returns:
A tensor of shape (num_documents, dimension) containing the encoded images.
"""
inputs = processor(
text=[document_prompt] * len(documents),
images=[resize(x) for x in documents],
videos=None,
padding='longest',
return_tensors='pt'
).to('cuda:0')
cache_position = torch.arange(0, len(queries))
inputs = model.prepare_inputs_for_generation(
**inputs, cache_position=cache_position, use_cache=False)
with torch.no_grad():
output = self.model(
**inputs,
return_dict=True,
output_hidden_states=True
)
embeddings = output.hidden_states[-1][:, -1]
return torch.nn.functional.normalize(embeddings[:, :dimension], p=2, dim=-1)
```
# Training
The model is based on [MrLight/dse-qwen2-2b-mrl-v1](https://huggingface.co/MrLight/dse-qwen2-2b-mrl-v1) and it was trained on the new [vdr-multilingual-train](https://huggingface.co/datasets/llamaindex/vdr-multilingual-train) english subset that consinsists of 100k high quality samples. It was trained for 1 epoch using the [DSE approach](https://arxiv.org/abs/2406.11251), with a batch size of 128 and hard-mined negatives.
# Results
The model has been evaluated on the Vidore benchmark. All evaluations are performed by calculating **NDCG@5** scores using an image resolution that can be represented with **maximum 768 tokens**.
On the full Vidore benchmark (evaluated with 768 image tokens), both the multilingual and the english-only version performs better than the base model.
| | **Avg** | **shiftproject** | **government** | **healthcare** | **energy** | **ai** | **docvqa** | **arxivqa** | **tatdqa** | **infovqa** | **tabfquad** |
|---------------------|----------|------------------|----------------|----------------|------------|----------|------------|-------------|------------|-------------|--------------|
| dse-qwen2-2b-mrl-v1 | 83.6 | 79.8 | 95.7 | 96.9 | 92 | 98.2 | 56.3 | **85.2** | 53.9 | 87.5 | 90.3 |
| vdr-2b-multi-v1 | 84.0 | 82.4 | 95.5 | 96.5 | 91.2 | **98.5** | **58.5** | 84.7 | 53.6 | 87.1 | **92.2** |
| vdr-2b-v1 | **84.3** | **83.4** | **96.9** | **97.2** | **92.6** | 96.8 | 57.4 | 85.1 | **54.1** | **87.9** | 91.3 |
![](chart.png)
| | Avg | shiftproject | government | healthcare | energy | ai |
|-----------------------------------------|----------|--------------|------------|------------|----------|----------|
| dse-qwen2-2b-mrl-v1 (2560 image tokens) | 93.0 | 82 | 96 | 96.4 | **92.9** | **97.5** |
| vdr-2b-v1 (768 image tokens) | **93.4** | **83.4** | **96.9** | **97.2** | 92.6 | 96.8 |
vdr-2b-v1 matches the performance of the base model on vidore synthetic datasets, while only using 30% of the image tokens (768 vs. 2560). This results in 3x faster inference and much lower VRAM usage. |