--- license: apache-2.0 language: - en base_model: - MrLight/dse-qwen2-2b-mrl-v1 tags: - transformers - sentence-transformers - Qwen2-VL datasets: - llamaindex/vdr-multilingual-train --- # vdr-2b-v1 ![](cover.png) vdr-2b-v1 is an english only embedding model designed for visual document retrieval. It encodes document page screenshots into dense single-vector representations, this will effectively allow to search and query visually rich multilingual documents without the need for any OCR, data extraction pipelines, chunking... - **Trained on the 🇬🇧 English vdr-multi-train subset:** extensive training dataset of 100k high-quality english samples. - **Low VRAM and Faster Inference**: achieves better results on synthetic Vidore benchmarks with just 30% of the base model image resolution. This results in 3x faster inference and much lower VRAM usage. - **Matryoshka Representation Learning**: You can reduce the vectors size 3x and still keep 98% of the embeddings quality. The multilingual version is available [here](https://huggingface.co/llamaindex/vdr-2b-multi-v1). To know more about both models, read the [announcement blogpost](https://huggingface.co/blog/marco/vdr-2b-multilingual). # Usage The model uses bf16 tensors and allocates ~4.4GB of VRAM when loaded. You can easily run inference and generate embeddings using 768 image patches and a batch size of 16 even on a cheap NVIDIA T4 GPU. This table reports the memory footprint (GB) under conditions of different batch sizes with HuggingFace Transformers and maximum 768 image patches. | Batch Size | GPU Memory (GB) | |------------|-----------------| | 4 | 6.9 | | 8 | 8.8 | | 16 | 11.5 | | 32 | 19.7 | You can generate embeddings with this model in many different ways:
via LlamaIndex ```bash pip install -U llama-index-embeddings-huggingface ``` ```python from llama_index.embeddings.huggingface import HuggingFaceEmbedding model = HuggingFaceEmbedding( model_name="llamaindex/vdr-2b-v1", device="cpu", # "mps" for mac, "cuda" for nvidia GPUs trust_remote_code=True, ) image_embedding = model.get_image_embedding("image.png") query_embedding = model.get_query_embedding("some query") ```
via HuggingFace Transformers ```python from transformers import AutoProcessor, Qwen2VLForConditionalGeneration from PIL import Image import torch import math # more pixels -> better embeddings -> more VRAM -> slower inference # From my experience, 768 image patches is the right spot for compute efficient embeddings. max_pixels = 768 * 28 * 28 min_pixels = 1 * 28 * 28 # Load the embedding model and processor model = Qwen2VLForConditionalGeneration.from_pretrained( 'llamaindex/vdr-2b-v1', # These are the recommended kwargs for the model, but change them as needed attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16, device_map="cuda:0" ).eval() processor = AutoProcessor.from_pretrained( 'llamaindex/vdr-2b-v1', min_pixels=min_pixels, max_pixels=max_pixels ) model.padding_side = "left" processor.tokenizer.padding_side = "left" document_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>" query_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>" ``` **Encode queries** ```python def encode_queries(queries: list[str], dimension: int) -> torch.Tensor: """ Encode a list of queries into a tensor of embeddings. Args: queries: A list of strings, each representing a query. dimension: The desired dimension of the output embeddings. Returns: A tensor of shape (num_queries, dimension) containing the encoded queries. """ dummy_image = Image.new('RGB', (56, 56)) inputs = processor( text=[query_prompt % x for x in queries], images=[dummy_image for _ in queries], videos=None, padding='longest', return_tensors='pt' ).to('cuda:0') cache_position = torch.arange(0, len(queries)) inputs = model.prepare_inputs_for_generation( **inputs, cache_position=cache_position, use_cache=False) with torch.no_grad(): output = self.model( **inputs, return_dict=True, output_hidden_states=True ) embeddings = output.hidden_states[-1][:, -1] return torch.nn.functional.normalize(embeddings[:, :dimension], p=2, dim=-1) ``` **Encode documents** ```python def round_by_factor(number: float, factor: int) -> int: return round(number / factor) * factor def ceil_by_factor(number: float, factor: int) -> int: return math.ceil(number / factor) * factor def floor_by_factor(number: float, factor: int) -> int: return math.floor(number / factor) * factor def smart_resize(height: int, width: int) -> tuple[int, int]: h_bar = max(28, round_by_factor(height, 28)) w_bar = max(28, round_by_factor(width, 28)) if h_bar * w_bar > max_pixels: beta = math.sqrt((height * width) / max_pixels) h_bar = floor_by_factor(height / beta, 28) w_bar = floor_by_factor(width / beta, 28) elif h_bar * w_bar < min_pixels: beta = math.sqrt(min_pixels / (height * width)) h_bar = ceil_by_factor(height * beta, 28) w_bar = ceil_by_factor(width * beta, 28) return w_bar, h_bar def resize(image: Image.Image): new_size = smart_resize(image.height, image.width) return image.resize(new_size) def encode_documents(documents: list[Image.Image], dimension: int): """ Encode a list of images into a tensor of embeddings. Args: documents: A list of PIL Image objects. dimension: The desired dimension of the output embeddings. Returns: A tensor of shape (num_documents, dimension) containing the encoded images. """ inputs = processor( text=[document_prompt] * len(documents), images=[resize(x) for x in documents], videos=None, padding='longest', return_tensors='pt' ).to('cuda:0') cache_position = torch.arange(0, len(queries)) inputs = model.prepare_inputs_for_generation( **inputs, cache_position=cache_position, use_cache=False) with torch.no_grad(): output = self.model( **inputs, return_dict=True, output_hidden_states=True ) embeddings = output.hidden_states[-1][:, -1] return torch.nn.functional.normalize(embeddings[:, :dimension], p=2, dim=-1) ```
via SentenceTransformers ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer( model_name_or_path="llamaindex/vdr-2b-v1", device="cuda", trust_remote_code=True, # These are the recommended kwargs for the model, but change them as needed if you don't have CUDA model_kwargs={ "torch_dtype": torch.bfloat16, "device_map": "cuda:0", "attn_implementation": "flash_attention_2" }, ) embeddings = model.encode("image.png") ```
# Training The model is based on [MrLight/dse-qwen2-2b-mrl-v1](https://huggingface.co/MrLight/dse-qwen2-2b-mrl-v1) and it was trained on the new [vdr-multilingual-train](https://huggingface.co/datasets/llamaindex/vdr-multilingual-train) english subset that consinsists of 100k high quality samples. It was trained for 1 epoch using the [DSE approach](https://arxiv.org/abs/2406.11251), with a batch size of 128 and hard-mined negatives. # Results The model has been evaluated on the Vidore benchmark. All evaluations are performed by calculating **NDCG@5** scores using an image resolution that can be represented with **maximum 768 tokens**. On the full Vidore benchmark (evaluated with 768 image tokens), both the multilingual and the english-only version performs better than the base model. | | **Avg** | **shiftproject** | **government** | **healthcare** | **energy** | **ai** | **docvqa** | **arxivqa** | **tatdqa** | **infovqa** | **tabfquad** | |---------------------|----------|------------------|----------------|----------------|------------|----------|------------|-------------|------------|-------------|--------------| | dse-qwen2-2b-mrl-v1 | 83.6 | 79.8 | 95.7 | 96.9 | 92 | 98.2 | 56.3 | **85.2** | 53.9 | 87.5 | 90.3 | | vdr-2b-multi-v1 | 84.0 | 82.4 | 95.5 | 96.5 | 91.2 | **98.5** | **58.5** | 84.7 | 53.6 | 87.1 | **92.2** | | vdr-2b-v1 | **84.3** | **83.4** | **96.9** | **97.2** | **92.6** | 96.8 | 57.4 | 85.1 | **54.1** | **87.9** | 91.3 | ![](chart.png) | | Avg | shiftproject | government | healthcare | energy | ai | |-----------------------------------------|----------|--------------|------------|------------|----------|----------| | dse-qwen2-2b-mrl-v1 (2560 image tokens) | 93.0 | 82 | 96 | 96.4 | **92.9** | **97.5** | | vdr-2b-v1 (768 image tokens) | **93.4** | **83.4** | **96.9** | **97.2** | 92.6 | 96.8 | vdr-2b-v1 matches the performance of the base model on vidore synthetic datasets, while only using 30% of the image tokens (768 vs. 2560). This results in 3x faster inference and much lower VRAM usage.