File size: 1,938 Bytes
0af6f6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-short-finetuned-ssv2-finetuned-rwf2000-epochs8
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-short-finetuned-ssv2-finetuned-rwf2000-epochs8

This model is a fine-tuned version of [MCG-NJU/videomae-base-short-finetuned-ssv2](https://huggingface.co/MCG-NJU/videomae-base-short-finetuned-ssv2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3523
- Accuracy: 0.5071

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 6400

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5905        | 0.12  | 800  | 0.6397          | 0.795    |
| 0.8951        | 1.12  | 1600 | 1.4140          | 0.6575   |
| 0.0121        | 2.12  | 2400 | 1.0683          | 0.7212   |
| 0.0081        | 3.12  | 3200 | 1.4044          | 0.6625   |
| 0.0531        | 4.12  | 4000 | 0.7906          | 0.8237   |
| 0.0045        | 5.12  | 4800 | 1.1109          | 0.7612   |
| 0.017         | 6.12  | 5600 | 1.8795          | 0.6462   |
| 0.6752        | 7.12  | 6400 | 1.0282          | 0.79     |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.13.1+cu117
- Datasets 2.8.0
- Tokenizers 0.13.2