Upload ./README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model:
|
4 |
+
- Qwen/Qwen2.5-14B
|
5 |
+
model-index:
|
6 |
+
- name: Virtuoso-Small
|
7 |
+
results:
|
8 |
+
- task:
|
9 |
+
type: text-generation
|
10 |
+
name: Text Generation
|
11 |
+
dataset:
|
12 |
+
name: IFEval (0-Shot)
|
13 |
+
type: HuggingFaceH4/ifeval
|
14 |
+
args:
|
15 |
+
num_few_shot: 0
|
16 |
+
metrics:
|
17 |
+
- type: inst_level_strict_acc and prompt_level_strict_acc
|
18 |
+
value: 79.35
|
19 |
+
name: strict accuracy
|
20 |
+
source:
|
21 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Virtuoso-Small
|
22 |
+
name: Open LLM Leaderboard
|
23 |
+
- task:
|
24 |
+
type: text-generation
|
25 |
+
name: Text Generation
|
26 |
+
dataset:
|
27 |
+
name: BBH (3-Shot)
|
28 |
+
type: BBH
|
29 |
+
args:
|
30 |
+
num_few_shot: 3
|
31 |
+
metrics:
|
32 |
+
- type: acc_norm
|
33 |
+
value: 50.4
|
34 |
+
name: normalized accuracy
|
35 |
+
source:
|
36 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Virtuoso-Small
|
37 |
+
name: Open LLM Leaderboard
|
38 |
+
- task:
|
39 |
+
type: text-generation
|
40 |
+
name: Text Generation
|
41 |
+
dataset:
|
42 |
+
name: MATH Lvl 5 (4-Shot)
|
43 |
+
type: hendrycks/competition_math
|
44 |
+
args:
|
45 |
+
num_few_shot: 4
|
46 |
+
metrics:
|
47 |
+
- type: exact_match
|
48 |
+
value: 34.29
|
49 |
+
name: exact match
|
50 |
+
source:
|
51 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Virtuoso-Small
|
52 |
+
name: Open LLM Leaderboard
|
53 |
+
- task:
|
54 |
+
type: text-generation
|
55 |
+
name: Text Generation
|
56 |
+
dataset:
|
57 |
+
name: GPQA (0-shot)
|
58 |
+
type: Idavidrein/gpqa
|
59 |
+
args:
|
60 |
+
num_few_shot: 0
|
61 |
+
metrics:
|
62 |
+
- type: acc_norm
|
63 |
+
value: 11.52
|
64 |
+
name: acc_norm
|
65 |
+
source:
|
66 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Virtuoso-Small
|
67 |
+
name: Open LLM Leaderboard
|
68 |
+
- task:
|
69 |
+
type: text-generation
|
70 |
+
name: Text Generation
|
71 |
+
dataset:
|
72 |
+
name: MuSR (0-shot)
|
73 |
+
type: TAUR-Lab/MuSR
|
74 |
+
args:
|
75 |
+
num_few_shot: 0
|
76 |
+
metrics:
|
77 |
+
- type: acc_norm
|
78 |
+
value: 14.44
|
79 |
+
name: acc_norm
|
80 |
+
source:
|
81 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Virtuoso-Small
|
82 |
+
name: Open LLM Leaderboard
|
83 |
+
- task:
|
84 |
+
type: text-generation
|
85 |
+
name: Text Generation
|
86 |
+
dataset:
|
87 |
+
name: MMLU-PRO (5-shot)
|
88 |
+
type: TIGER-Lab/MMLU-Pro
|
89 |
+
config: main
|
90 |
+
split: test
|
91 |
+
args:
|
92 |
+
num_few_shot: 5
|
93 |
+
metrics:
|
94 |
+
- type: acc
|
95 |
+
value: 46.57
|
96 |
+
name: accuracy
|
97 |
+
source:
|
98 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Virtuoso-Small
|
99 |
+
name: Open LLM Leaderboard
|
100 |
+
---
|
101 |
+
### exl2 quant (measurement.json in main branch)
|
102 |
+
---
|
103 |
+
### check revisions for quants
|
104 |
+
---
|
105 |
+
|
106 |
+
|
107 |
+
<div align="center">
|
108 |
+
<img src="https://i.ibb.co/pXD6Bcv/SW2-U-g-QQLSH1-ZAbxhs-Iu-A.webp" alt="Virtuoso-Small" style="border-radius: 10px; box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0, 0.19); max-width: 100%; height: auto;">
|
109 |
+
</div>
|
110 |
+
|
111 |
+
GGUF Available [Here](https://huggingface.co/arcee-ai/Virtuoso-Small-GGUF)
|
112 |
+
|
113 |
+
# Virtuoso-Small
|
114 |
+
|
115 |
+
Virtuoso-Small is the debut public release of the Virtuoso series of models by Arcee.ai, designed to bring cutting-edge generative AI capabilities to organizations and developers in a compact, efficient form. With 14 billion parameters, Virtuoso-Small is an accessible entry point for high-quality instruction-following, complex reasoning, and business-oriented generative AI tasks. Its larger siblings, Virtuoso-Medium and Virtuoso-Large, offer even greater capabilities and are available via API at [models.arcee.ai](https://models.arcee.ai).
|
116 |
+
|
117 |
+
## Key Features
|
118 |
+
|
119 |
+
- **Compact and Efficient**: With 14 billion parameters, Virtuoso-Small provides a high-performance solution optimized for smaller hardware configurations without sacrificing quality.
|
120 |
+
- **Business-Oriented**: Tailored for use cases such as customer support, content creation, and technical assistance, Virtuoso-Small meets the demands of modern enterprises.
|
121 |
+
- **Scalable Ecosystem**: Part of the Virtuoso series, Virtuoso-Small is fully interoperable with its larger siblings, Forte and Prime, enabling seamless scaling as your needs grow.
|
122 |
+
|
123 |
+
---
|
124 |
+
|
125 |
+
## Deployment Options
|
126 |
+
|
127 |
+
Virtuoso-Small is available under the Apache-2.0 license and can be deployed locally or accessed through an API at [models.arcee.ai](https://models.arcee.ai). For larger-scale or more demanding applications, consider Virtuoso-Forte or Virtuoso-Prime.
|
128 |
+
|
129 |
+
|
130 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
|
131 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_arcee-ai__Virtuoso-Small)
|
132 |
+
|
133 |
+
| Metric |Value|
|
134 |
+
|-------------------|----:|
|
135 |
+
|Avg. |39.43|
|
136 |
+
|IFEval (0-Shot) |79.35|
|
137 |
+
|BBH (3-Shot) |50.40|
|
138 |
+
|MATH Lvl 5 (4-Shot)|34.29|
|
139 |
+
|GPQA (0-shot) |11.52|
|
140 |
+
|MuSR (0-shot) |14.44|
|
141 |
+
|MMLU-PRO (5-shot) |46.57|
|
142 |
+
|