lunahr commited on
Commit
d0dcf39
·
1 Parent(s): b66ed89

Remove truncation

Browse files
Files changed (2) hide show
  1. README.md +4 -17
  2. tokenizer.json +2 -2
README.md CHANGED
@@ -13,6 +13,7 @@ tags:
13
  base_model: chuanli11/Llama-3.2-3B-Instruct-uncensored
14
  datasets:
15
  - KingNish/reasoning-base-20k
 
16
  model-index:
17
  - name: thea-3b-25r
18
  results:
@@ -112,9 +113,9 @@ model-index:
112
 
113
  # Model Description
114
 
115
- A work in progress uncensored reasoning Llama 3.2 3B model trained on reasoning data.
116
 
117
- Since I used different training code, it is unknown whether it generates the same kind of reasoning.
118
  Here is what inference code you should use:
119
  ```py
120
  from transformers import AutoModelForCausalLM, AutoTokenizer
@@ -138,7 +139,7 @@ reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.d
138
  reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS)
139
  reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True)
140
 
141
- # print("REASONING: " + reasoning_output)
142
 
143
  # Generate answer
144
  messages.append({"role": "reasoning", "content": reasoning_output})
@@ -158,17 +159,3 @@ print("ANSWER: " + response_output)
158
  This Llama model was trained faster than [Unsloth](https://github.com/unslothai/unsloth) using [custom training code](https://www.kaggle.com/code/piotr25691/distributed-llama-training-with-2xt4).
159
 
160
  Visit https://www.kaggle.com/code/piotr25691/distributed-llama-training-with-2xt4 to find out how you can finetune your models using BOTH of the Kaggle provided GPUs.
161
-
162
- # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
163
- Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_piotr25691__thea-3b-25r)
164
-
165
- | Metric |Value|
166
- |-------------------|----:|
167
- |Avg. |23.74|
168
- |IFEval (0-Shot) |73.44|
169
- |BBH (3-Shot) |22.55|
170
- |MATH Lvl 5 (4-Shot)|16.31|
171
- |GPQA (0-shot) | 2.35|
172
- |MuSR (0-shot) | 3.57|
173
- |MMLU-PRO (5-shot) |24.25|
174
-
 
13
  base_model: chuanli11/Llama-3.2-3B-Instruct-uncensored
14
  datasets:
15
  - KingNish/reasoning-base-20k
16
+ - piotr25691/thea-name-overrides
17
  model-index:
18
  - name: thea-3b-25r
19
  results:
 
113
 
114
  # Model Description
115
 
116
+ An uncensored reasoning Llama 3.2 3B model trained on reasoning data.
117
 
118
+ It has been trained using improved training code, and gives an improved performance.
119
  Here is what inference code you should use:
120
  ```py
121
  from transformers import AutoModelForCausalLM, AutoTokenizer
 
139
  reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS)
140
  reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True)
141
 
142
+ print("REASONING: " + reasoning_output)
143
 
144
  # Generate answer
145
  messages.append({"role": "reasoning", "content": reasoning_output})
 
159
  This Llama model was trained faster than [Unsloth](https://github.com/unslothai/unsloth) using [custom training code](https://www.kaggle.com/code/piotr25691/distributed-llama-training-with-2xt4).
160
 
161
  Visit https://www.kaggle.com/code/piotr25691/distributed-llama-training-with-2xt4 to find out how you can finetune your models using BOTH of the Kaggle provided GPUs.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tokenizer.json CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:051830f2f6c06d23b79bfeb1cb00c36ab32a29c2905e80e0b8e22148b654ec8b
3
- size 17210197
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12487b766b0b1584dcc5311824df327d5ea154939524790c643cdf2a3f6adf9f
3
+ size 17209921