--- language: - en license: llama3.2 tags: - text-generation-inference - transformers - llama - trl - sft - reasoning - llama-3 base_model: chuanli11/Llama-3.2-3B-Instruct-uncensored datasets: - KingNish/reasoning-base-20k - lunahr/thea-name-overrides model-index: - name: thea-3b-25r results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 73.44 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lunahr/thea-3b-25r name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 22.55 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lunahr/thea-3b-25r name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 16.31 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lunahr/thea-3b-25r name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 2.35 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lunahr/thea-3b-25r name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 3.57 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lunahr/thea-3b-25r name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 24.25 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lunahr/thea-3b-25r name: Open LLM Leaderboard --- # Note This is a legacy variant of Thea. A newer version is available: https://huggingface.co/lunahr/thea-v2-3b-50r # Model Description An uncensored reasoning Llama 3.2 3B model trained on reasoning data. It has been trained using improved training code, and gives an improved performance. Here is what inference code you should use: ```py from transformers import AutoModelForCausalLM, AutoTokenizer MAX_REASONING_TOKENS = 1024 MAX_RESPONSE_TOKENS = 512 model_name = "lunahr/thea-3b-25r" model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Which is greater 9.9 or 9.11 ??" messages = [ {"role": "user", "content": prompt} ] # Generate reasoning reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True) reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device) reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS) reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True) print("REASONING: " + reasoning_output) # Generate answer messages.append({"role": "reasoning", "content": reasoning_output}) response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device) response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS) response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True) print("ANSWER: " + response_output) ``` - **Trained by:** [Piotr Zalewski](https://huggingface.co/lunahr) - **License:** llama3.2 - **Finetuned from model:** [chuanli11/Llama-3.2-3B-Instruct-uncensored](https://huggingface.co/chuanli11/Llama-3.2-3B-Instruct-uncensored) - **Dataset used:** [KingNish/reasoning-base-20k](https://huggingface.co/datasets/KingNish/reasoning-base-20k) This Llama model was trained faster than [Unsloth](https://github.com/unslothai/unsloth) using [custom training code](https://www.kaggle.com/code/piotr25691/distributed-llama-training-with-2xt4). Visit https://www.kaggle.com/code/piotr25691/distributed-llama-training-with-2xt4 to find out how you can finetune your models using BOTH of the Kaggle provided GPUs.