--- license: mit inference: false --- # Introduction **Music2Vec** is accepted as 2-page abstract in Late Breaking Demos (LBD) at the ISMIR 2022. It is a completely unsupervised model trained on 1000 hour music audios. Our model is SOTA-comparable on multiple MIR tasks even under probing settings, while keeping fine-tunable on a single 2080Ti. Larger models trained with more data are on the way~ # Model Usage ## Huggingface Loading ```python from transformers import Wav2Vec2Processor, Data2VecAudioModel import torch from torch import nn from datasets import load_dataset # load demo audio and set processor dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation") dataset = dataset.sort("id") sampling_rate = dataset.features["audio"].sampling_rate processor = Wav2Vec2Processor.from_pretrained("facebook/data2vec-audio-base-960h") # loading our model weights model = Data2VecAudioModel.from_pretrained("m-a-p/music2vec-v1") # audio file is decoded on the fly inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs, output_hidden_states=True) # take a look at the output shape, there are 13 layers of representation # each layer performs differently in different downstream tasks, you should choose empirically all_layer_hidden_states = torch.stack(outputs.hidden_states).squeeze() print(all_layer_hidden_states.shape) # [13 layer, 292 timestep, 768 feature_dim] # for utterance level classification tasks, you can simply reduce the representation in time time_reduced_hidden_states = all_layer_hidden_states.mean(-2) print(time_reduced_hidden_states.shape) # [13, 768] # you can even use a learnable weighted average representation aggregator = nn.Conv1d(in_channels=13, out_channels=1, kernel_size=1) weighted_avg_hidden_states = aggregator(time_reduced_hidden_states).squeeze() print(weighted_avg_hidden_states.shape) # [768] ``` Our model is based on the [data2vec audio model](https://huggingface.co/docs/transformers/model_doc/data2vec#transformers.Data2VecAudioModel). # Citation The paper can be found at [ISMIR](https://ismir2022program.ismir.net/lbd_410.html). ```shell @article{li2022map, title={MAP-Music2Vec: A Simple and Effective Baseline for Self-Supervised Music Audio Representation Learning}, author={Li, Yizhi and Yuan, Ruibin and Zhang, Ge and Ma, Yinghao and Lin, Chenghua and Chen, Xingran and Ragni, Anton and Yin, Hanzhi and Hu, Zhijie and He, Haoyu and others}, journal={arXiv preprint arXiv:2212.02508}, year={2022} } ```