madlag commited on
Commit
c1ad202
·
1 Parent(s): fcc478c

Adding modes, graphs and metadata.

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +97 -0
  2. config.json +228 -0
  3. model_card/density_info.js +174 -0
  4. model_card/images/layer_0_attention_output_dense.png +0 -0
  5. model_card/images/layer_0_attention_self_key.png +0 -0
  6. model_card/images/layer_0_attention_self_query.png +0 -0
  7. model_card/images/layer_0_attention_self_value.png +0 -0
  8. model_card/images/layer_0_intermediate_dense.png +0 -0
  9. model_card/images/layer_0_output_dense.png +0 -0
  10. model_card/images/layer_10_attention_output_dense.png +0 -0
  11. model_card/images/layer_10_attention_self_key.png +0 -0
  12. model_card/images/layer_10_attention_self_query.png +0 -0
  13. model_card/images/layer_10_attention_self_value.png +0 -0
  14. model_card/images/layer_10_intermediate_dense.png +0 -0
  15. model_card/images/layer_10_output_dense.png +0 -0
  16. model_card/images/layer_11_attention_output_dense.png +0 -0
  17. model_card/images/layer_11_attention_self_key.png +0 -0
  18. model_card/images/layer_11_attention_self_query.png +0 -0
  19. model_card/images/layer_11_attention_self_value.png +0 -0
  20. model_card/images/layer_11_intermediate_dense.png +0 -0
  21. model_card/images/layer_11_output_dense.png +0 -0
  22. model_card/images/layer_12_attention_output_dense.png +0 -0
  23. model_card/images/layer_12_attention_self_key.png +0 -0
  24. model_card/images/layer_12_attention_self_query.png +0 -0
  25. model_card/images/layer_12_attention_self_value.png +0 -0
  26. model_card/images/layer_12_intermediate_dense.png +0 -0
  27. model_card/images/layer_12_output_dense.png +0 -0
  28. model_card/images/layer_13_attention_output_dense.png +0 -0
  29. model_card/images/layer_13_attention_self_key.png +0 -0
  30. model_card/images/layer_13_attention_self_query.png +0 -0
  31. model_card/images/layer_13_attention_self_value.png +0 -0
  32. model_card/images/layer_13_intermediate_dense.png +0 -0
  33. model_card/images/layer_13_output_dense.png +0 -0
  34. model_card/images/layer_14_attention_output_dense.png +0 -0
  35. model_card/images/layer_14_attention_self_key.png +0 -0
  36. model_card/images/layer_14_attention_self_query.png +0 -0
  37. model_card/images/layer_14_attention_self_value.png +0 -0
  38. model_card/images/layer_14_intermediate_dense.png +0 -0
  39. model_card/images/layer_14_output_dense.png +0 -0
  40. model_card/images/layer_15_attention_output_dense.png +0 -0
  41. model_card/images/layer_15_attention_self_key.png +0 -0
  42. model_card/images/layer_15_attention_self_query.png +0 -0
  43. model_card/images/layer_15_attention_self_value.png +0 -0
  44. model_card/images/layer_15_intermediate_dense.png +0 -0
  45. model_card/images/layer_15_output_dense.png +0 -0
  46. model_card/images/layer_16_attention_output_dense.png +0 -0
  47. model_card/images/layer_16_attention_self_key.png +0 -0
  48. model_card/images/layer_16_attention_self_query.png +0 -0
  49. model_card/images/layer_16_attention_self_value.png +0 -0
  50. model_card/images/layer_16_intermediate_dense.png +0 -0
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ thumbnail:
4
+ license: mit
5
+ tags:
6
+ - question-answering
7
+ - bert
8
+ - bert-base
9
+ datasets:
10
+ - squad
11
+ metrics:
12
+ - squad
13
+ widget:
14
+ - text: "Where is the Eiffel Tower located?"
15
+ context: "The Eiffel Tower is a wrought-iron lattice tower on the Champ de Mars in Paris, France. It is named after the engineer Gustave Eiffel, whose company designed and built the tower."
16
+ - text: "Who is Frederic Chopin?"
17
+ context: "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano."
18
+ ---
19
+
20
+ ## BERT-base uncased model fine-tuned on SQuAD v1
21
+
22
+ This model was created using the [nn_pruning](https://github.com/huggingface/nn_pruning) python library: the **linear layers contains 25.0%** of the original weights.
23
+
24
+
25
+
26
+ The model contains **32.0%** of the original weights **overall** (the embeddings account for a significant part of the model, and they are not pruned by this method).
27
+
28
+ With a simple resizing of the linear matrices it ran **0.69x as fast as BERT-base** on the evaluation.
29
+ This is possible because the pruning method lead to structured matrices: to visualize them, hover below on the plot to see the non-zero/zero parts of each matrix.
30
+
31
+ <div class="graph"><script src="/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/density_info.js" id="3da5dac6-12de-4334-845b-7925fac4bff8"></script></div>
32
+
33
+ In terms of accuracy, its **F1 is 83.22**, compared with 85.85 for BERT-base, a **F1 drop of 2.63**.
34
+
35
+ ## Fine-Pruning details
36
+ This model was fine-tuned from the HuggingFace [BERT](https://www.aclweb.org/anthology/N19-1423/) base uncased checkpoint on [SQuAD1.1](https://rajpurkar.github.io/SQuAD-explorer), and distilled from the model [madlag/bert-large-uncased-whole-word-masking-finetuned-squadv2](https://huggingface.co/madlag/bert-large-uncased-whole-word-masking-finetuned-squadv2).
37
+ This model is case-insensitive: it does not make a difference between english and English.
38
+
39
+ A side-effect of the block pruning is that some of the attention heads are completely removed: 155 heads were removed on a total of 384 (40.4%).
40
+ Here is a detailed view on how the remaining heads are distributed in the network after pruning.
41
+ <div class="graph"><script src="/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/pruning_info.js" id="f08c927a-abe6-416a-9256-3341cf71e778"></script></div>
42
+
43
+ ## Details of the SQuAD1.1 dataset
44
+
45
+ | Dataset | Split | # samples |
46
+ | -------- | ----- | --------- |
47
+ | SQuAD 2.0 | train | 130.6K |
48
+ | SQuAD 2.0 | eval | 11.1k |
49
+
50
+ ### Fine-tuning
51
+ - Python: `3.8.5`
52
+
53
+ - Machine specs:
54
+
55
+ ```CPU: Intel(R) Core(TM) i7-6700K CPU
56
+ Memory: 64 GiB
57
+ GPUs: 1 GeForce GTX 3090, with 24GiB memory
58
+ GPU driver: 455.23.05, CUDA: 11.1
59
+ ```
60
+
61
+ ### Results
62
+
63
+ **Pytorch model file size**: `1119M` (original BERT: `438M`)
64
+
65
+ | Metric | # Value | # Original ([Table 2](https://www.aclweb.org/anthology/N19-1423.pdf))| Variation |
66
+ | ------ | --------- | --------- | --------- |
67
+ | **EM** | **80.19** | **80.8** | **-0.61**|
68
+ | **F1** | **83.22** | **88.5** | **-5.28**|
69
+
70
+ ## Example Usage
71
+ Install nn_pruning: it contains the optimization script, which just pack the linear layers into smaller ones by removing empty rows/columns.
72
+
73
+ `pip install nn_pruning`
74
+
75
+ Then you can use the `transformers library` almost as usual: you just have to call `optimize_model` when the pipeline has loaded.
76
+
77
+ ```python
78
+ from transformers import pipeline
79
+ from nn_pruning.inference_model_patcher import optimize_model
80
+
81
+ qa_pipeline = pipeline(
82
+ "question-answering",
83
+ model="madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1",
84
+ tokenizer="madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1"
85
+ )
86
+
87
+ print("BERT-base parameters: 110M")
88
+ print(f"Parameters count (includes head pruning)={int(qa_pipeline.model.num_parameters() / 1E6)}M")
89
+ qa_pipeline.model = optimize_model(qa_pipeline.model, "dense")
90
+
91
+ print(f"Parameters count after optimization={int(qa_pipeline.model.num_parameters() / 1E6)}M")
92
+ predictions = qa_pipeline({
93
+ 'context': "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano.",
94
+ 'question': "Who is Frederic Chopin?",
95
+ })
96
+ print("Predictions", predictions)
97
+ ```
config.json ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/tmp/tmp_5fri74d",
3
+ "architectures": [
4
+ "BertForQuestionAnswering"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 1024,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 4096,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 24,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "pruned_heads": {
21
+ "0": [
22
+ 0,
23
+ 3,
24
+ 4,
25
+ 5,
26
+ 9,
27
+ 13,
28
+ 15
29
+ ],
30
+ "1": [
31
+ 0,
32
+ 1,
33
+ 7,
34
+ 9,
35
+ 10,
36
+ 13,
37
+ 14
38
+ ],
39
+ "2": [
40
+ 0,
41
+ 1,
42
+ 4,
43
+ 6,
44
+ 7,
45
+ 8,
46
+ 9,
47
+ 11,
48
+ 12,
49
+ 13,
50
+ 14,
51
+ 15
52
+ ],
53
+ "3": [
54
+ 0,
55
+ 3,
56
+ 5,
57
+ 6,
58
+ 7,
59
+ 8,
60
+ 9,
61
+ 13,
62
+ 14,
63
+ 15
64
+ ],
65
+ "4": [
66
+ 0,
67
+ 2,
68
+ 3,
69
+ 5,
70
+ 6,
71
+ 7,
72
+ 9,
73
+ 10,
74
+ 11,
75
+ 12,
76
+ 14
77
+ ],
78
+ "5": [
79
+ 3,
80
+ 4,
81
+ 5,
82
+ 6,
83
+ 7,
84
+ 8,
85
+ 9,
86
+ 12,
87
+ 13,
88
+ 14,
89
+ 15
90
+ ],
91
+ "6": [
92
+ 0,
93
+ 1,
94
+ 2,
95
+ 3,
96
+ 4,
97
+ 7,
98
+ 8,
99
+ 9,
100
+ 10,
101
+ 11,
102
+ 12,
103
+ 15
104
+ ],
105
+ "7": [
106
+ 3,
107
+ 5,
108
+ 8,
109
+ 9,
110
+ 10,
111
+ 11,
112
+ 12,
113
+ 13
114
+ ],
115
+ "8": [
116
+ 3,
117
+ 5,
118
+ 7,
119
+ 8,
120
+ 9,
121
+ 11,
122
+ 12
123
+ ],
124
+ "9": [
125
+ 0,
126
+ 1,
127
+ 2,
128
+ 5,
129
+ 6,
130
+ 7,
131
+ 13,
132
+ 14
133
+ ],
134
+ "10": [
135
+ 1,
136
+ 2,
137
+ 4,
138
+ 5,
139
+ 6,
140
+ 8,
141
+ 11,
142
+ 13
143
+ ],
144
+ "11": [
145
+ 2,
146
+ 5,
147
+ 6,
148
+ 8,
149
+ 12,
150
+ 15
151
+ ],
152
+ "12": [
153
+ 0,
154
+ 2,
155
+ 6,
156
+ 9,
157
+ 13
158
+ ],
159
+ "13": [
160
+ 2,
161
+ 3,
162
+ 6,
163
+ 10,
164
+ 12,
165
+ 15
166
+ ],
167
+ "14": [
168
+ 10,
169
+ 5
170
+ ],
171
+ "15": [
172
+ 0,
173
+ 9
174
+ ],
175
+ "16": [],
176
+ "17": [
177
+ 1,
178
+ 4,
179
+ 12
180
+ ],
181
+ "18": [
182
+ 11,
183
+ 4
184
+ ],
185
+ "19": [
186
+ 5
187
+ ],
188
+ "20": [
189
+ 0,
190
+ 1,
191
+ 12
192
+ ],
193
+ "21": [
194
+ 0,
195
+ 2,
196
+ 3,
197
+ 4,
198
+ 8,
199
+ 10,
200
+ 11,
201
+ 12,
202
+ 15
203
+ ],
204
+ "22": [
205
+ 0,
206
+ 1,
207
+ 3,
208
+ 7,
209
+ 9,
210
+ 10,
211
+ 11,
212
+ 13
213
+ ],
214
+ "23": [
215
+ 2,
216
+ 4,
217
+ 7,
218
+ 8,
219
+ 9,
220
+ 10,
221
+ 13
222
+ ]
223
+ },
224
+ "transformers_version": "4.7.0.dev0",
225
+ "type_vocab_size": 2,
226
+ "use_cache": true,
227
+ "vocab_size": 30522
228
+ }
model_card/density_info.js ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ (function() {
2
+ var fn = function() {
3
+
4
+ (function(root) {
5
+ function now() {
6
+ return new Date();
7
+ }
8
+
9
+ var force = false;
10
+
11
+ if (typeof root._bokeh_onload_callbacks === "undefined" || force === true) {
12
+ root._bokeh_onload_callbacks = [];
13
+ root._bokeh_is_loading = undefined;
14
+ }
15
+
16
+
17
+
18
+
19
+ var element = document.getElementById("3da5dac6-12de-4334-845b-7925fac4bff8");
20
+ if (element == null) {
21
+ console.warn("Bokeh: autoload.js configured with elementid '3da5dac6-12de-4334-845b-7925fac4bff8' but no matching script tag was found.")
22
+ }
23
+
24
+
25
+ function run_callbacks() {
26
+ try {
27
+ root._bokeh_onload_callbacks.forEach(function(callback) {
28
+ if (callback != null)
29
+ callback();
30
+ });
31
+ } finally {
32
+ delete root._bokeh_onload_callbacks
33
+ }
34
+ console.debug("Bokeh: all callbacks have finished");
35
+ }
36
+
37
+ function load_libs(css_urls, js_urls, callback) {
38
+ if (css_urls == null) css_urls = [];
39
+ if (js_urls == null) js_urls = [];
40
+
41
+ root._bokeh_onload_callbacks.push(callback);
42
+ if (root._bokeh_is_loading > 0) {
43
+ console.debug("Bokeh: BokehJS is being loaded, scheduling callback at", now());
44
+ return null;
45
+ }
46
+ if (js_urls == null || js_urls.length === 0) {
47
+ run_callbacks();
48
+ return null;
49
+ }
50
+ console.debug("Bokeh: BokehJS not loaded, scheduling load and callback at", now());
51
+ root._bokeh_is_loading = css_urls.length + js_urls.length;
52
+
53
+ function on_load() {
54
+ root._bokeh_is_loading--;
55
+ if (root._bokeh_is_loading === 0) {
56
+ console.debug("Bokeh: all BokehJS libraries/stylesheets loaded");
57
+ run_callbacks()
58
+ }
59
+ }
60
+
61
+ function on_error() {
62
+ console.error("failed to load " + url);
63
+ }
64
+
65
+ for (var i = 0; i < css_urls.length; i++) {
66
+ var url = css_urls[i];
67
+ const element = document.createElement("link");
68
+ element.onload = on_load;
69
+ element.onerror = on_error;
70
+ element.rel = "stylesheet";
71
+ element.type = "text/css";
72
+ element.href = url;
73
+ console.debug("Bokeh: injecting link tag for BokehJS stylesheet: ", url);
74
+ document.body.appendChild(element);
75
+ }
76
+
77
+ const hashes = {"https://cdn.bokeh.org/bokeh/release/bokeh-2.2.3.min.js": "T2yuo9Oe71Cz/I4X9Ac5+gpEa5a8PpJCDlqKYO0CfAuEszu1JrXLl8YugMqYe3sM", "https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.2.3.min.js": "98GDGJ0kOMCUMUePhksaQ/GYgB3+NH9h996V88sh3aOiUNX3N+fLXAtry6xctSZ6", "https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.2.3.min.js": "89bArO+nlbP3sgakeHjCo1JYxYR5wufVgA3IbUvDY+K7w4zyxJqssu7wVnfeKCq8"};
78
+
79
+ for (var i = 0; i < js_urls.length; i++) {
80
+ var url = js_urls[i];
81
+ var element = document.createElement('script');
82
+ element.onload = on_load;
83
+ element.onerror = on_error;
84
+ element.async = false;
85
+ element.src = url;
86
+ if (url in hashes) {
87
+ element.crossOrigin = "anonymous";
88
+ element.integrity = "sha384-" + hashes[url];
89
+ }
90
+ console.debug("Bokeh: injecting script tag for BokehJS library: ", url);
91
+ document.head.appendChild(element);
92
+ }
93
+ };
94
+
95
+ function inject_raw_css(css) {
96
+ const element = document.createElement("style");
97
+ element.appendChild(document.createTextNode(css));
98
+ document.body.appendChild(element);
99
+ }
100
+
101
+
102
+ var js_urls = ["https://cdn.bokeh.org/bokeh/release/bokeh-2.2.3.min.js", "https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.2.3.min.js", "https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.2.3.min.js"];
103
+ var css_urls = [];
104
+
105
+
106
+ var inline_js = [
107
+ function(Bokeh) {
108
+ Bokeh.set_log_level("info");
109
+ },
110
+
111
+ function(Bokeh) {
112
+ (function() {
113
+ var fn = function() {
114
+ Bokeh.safely(function() {
115
+ (function(root) {
116
+ function embed_document(root) {
117
+
118
+ var docs_json = '{"244ac3f3-9c39-451a-b6fd-a9168f07e592":{"roots":{"references":[{"attributes":{"above":[{"id":"1140"}],"below":[{"id":"1106"}],"center":[{"id":"1109"},{"id":"1113"}],"left":[{"id":"1110"}],"outline_line_color":null,"plot_height":300,"plot_width":505,"renderers":[{"id":"1120"},{"id":"1126"},{"id":"1132"},{"id":"1138"}],"title":{"id":"1096"},"toolbar":{"id":"1114"},"x_range":{"id":"1098"},"x_scale":{"id":"1102"},"y_range":{"id":"1100"},"y_scale":{"id":"1104"}},"id":"1095","subtype":"Figure","type":"Plot"},{"attributes":{"source":{"id":"1116"}},"id":"1121","type":"CDSView"},{"attributes":{"data_source":{"id":"1128"},"glyph":{"id":"1130"},"hover_glyph":null,"muted_glyph":null,"name":"value","nonselection_glyph":{"id":"1131"},"selection_glyph":null,"view":{"id":"1133"}},"id":"1132","type":"GlyphRenderer"},{"attributes":{"data_source":{"id":"1134"},"glyph":{"id":"1136"},"hover_glyph":null,"muted_glyph":null,"name":"fully connected","nonselection_glyph":{"id":"1137"},"selection_glyph":null,"view":{"id":"1139"}},"id":"1138","type":"GlyphRenderer"},{"attributes":{"source":{"id":"1122"}},"id":"1127","type":"CDSView"},{"attributes":{},"id":"1098","type":"DataRange1d"},{"attributes":{"items":[{"id":"1141"},{"id":"1142"},{"id":"1143"},{"id":"1144"}],"location":[10,0],"orientation":"horizontal"},"id":"1140","type":"Legend"},{"attributes":{"fill_color":{"value":"#6573f7"},"line_color":{"value":"#6573f7"},"top":{"field":"height"},"width":{"value":0.125},"x":{"field":"x"}},"id":"1118","type":"VBar"},{"attributes":{"axis":{"id":"1106"},"grid_line_color":null,"ticker":null},"id":"1109","type":"Grid"},{"attributes":{},"id":"1156","type":"UnionRenderers"},{"attributes":{"label":{"value":"query"},"renderers":[{"id":"1120"}]},"id":"1141","type":"LegendItem"},{"attributes":{"fill_color":{"value":"#20cb97"},"line_color":{"value":"#20cb97"},"top":{"field":"height"},"width":{"value":0.125},"x":{"field":"x"}},"id":"1130","type":"VBar"},{"attributes":{"source":{"id":"1134"}},"id":"1139","type":"CDSView"},{"attributes":{"text":"Transformer Layers"},"id":"1096","type":"Title"},{"attributes":{},"id":"1111","type":"BasicTicker"},{"attributes":{"callback":null,"tooltips":"\\n &lt;div&gt;\\n &lt;div style=\\"margin-bottom:10px\\"&gt;\\n &lt;span style=\\"font-size: 15px;\\"&gt;&lt;b&gt;@name&lt;/b&gt;&lt;br/&gt;density=@density&lt;/span&gt;\\n &lt;/div&gt;\\n &lt;div&gt; \\n &lt;img\\n src=\\"@url\\" height=\\"@img_height\\" width=\\"@img_width\\" alt=\\"@url\\"\\n style=\\"float: left; margin: 0px 15px 15px 0px;\\"\\n border=\\"0\\"\\n /&gt;\\n &lt;/div&gt;\\n &lt;/div&gt;\\n "},"id":"1094","type":"HoverTool"},{"attributes":{"axis_label":"Parameters (M)","formatter":{"id":"1146"},"minor_tick_line_color":null,"ticker":{"id":"1111"}},"id":"1110","type":"LinearAxis"},{"attributes":{},"id":"1102","type":"LinearScale"},{"attributes":{"data_source":{"id":"1122"},"glyph":{"id":"1124"},"hover_glyph":null,"muted_glyph":null,"name":"key","nonselection_glyph":{"id":"1125"},"selection_glyph":null,"view":{"id":"1127"}},"id":"1126","type":"GlyphRenderer"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#6573f7"},"line_alpha":{"value":0.1},"line_color":{"value":"#6573f7"},"top":{"field":"height"},"width":{"value":0.125},"x":{"field":"x"}},"id":"1119","type":"VBar"},{"attributes":{},"id":"1150","type":"UnionRenderers"},{"attributes":{},"id":"1152","type":"UnionRenderers"},{"attributes":{},"id":"1146","type":"BasicTickFormatter"},{"attributes":{"data":{"density":["30.3%","39.0%","18.8%","25.1%","19.0%","17.0%","18.0%","34.7%","45.3%","37.1%","43.1%","52.2%","48.8%","50.2%","61.6%","64.0%","72.0%","56.8%","67.5%","58.5%","47.3%","18.1%","17.1%","13.7%"],"height":[0.31744,0.408576,0.197632,0.263168,0.19968,0.178176,0.188416,0.36352,0.475136,0.38912,0.451584,0.54784,0.512,0.526336,0.646144,0.67072,0.754688,0.595968,0.707584,0.613376,0.495616,0.18944,0.1792,0.14336],"img_height":["128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px"],"img_width":["128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px"],"name":["0.attention.query","1.attention.query","2.attention.query","3.attention.query","4.attention.query","5.attention.query","6.attention.query","7.attention.query","8.attention.query","9.attention.query","10.attention.query","11.attention.query","12.attention.query","13.attention.query","14.attention.query","15.attention.query","16.attention.query","17.attention.query","18.attention.query","19.attention.query","20.attention.query","21.attention.query","22.attention.query","23.attention.query"],"parameters":["0.32","0.41","0.20","0.26","0.20","0.18","0.19","0.36","0.48","0.39","0.45","0.55","0.51","0.53","0.65","0.67","0.75","0.60","0.71","0.61","0.50","0.19","0.18","0.14"],"url":["/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_0_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_1_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_2_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_3_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_4_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_5_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_6_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_7_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_8_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_9_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_10_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_11_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_12_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_13_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_14_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_15_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_16_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_17_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_18_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_19_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_20_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_21_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_22_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_23_attention_self_query.png"],"x":[0.08333333333333333,1.0833333333333333,2.0833333333333335,3.0833333333333335,4.083333333333333,5.083333333333333,6.083333333333333,7.083333333333333,8.083333333333334,9.083333333333334,10.083333333333334,11.083333333333334,12.083333333333334,13.083333333333334,14.083333333333334,15.083333333333334,16.083333333333332,17.083333333333332,18.083333333333332,19.083333333333332,20.083333333333332,21.083333333333332,22.083333333333332,23.083333333333332]},"selected":{"id":"1151"},"selection_policy":{"id":"1150"}},"id":"1116","type":"ColumnDataSource"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#20cb97"},"line_alpha":{"value":0.1},"line_color":{"value":"#20cb97"},"top":{"field":"height"},"width":{"value":0.125},"x":{"field":"x"}},"id":"1131","type":"VBar"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_multi":null,"active_scroll":"auto","active_tap":"auto","tools":[{"id":"1094"}]},"id":"1114","type":"Toolbar"},{"attributes":{},"id":"1153","type":"Selection"},{"attributes":{"source":{"id":"1128"}},"id":"1133","type":"CDSView"},{"attributes":{"fill_color":{"value":"#ed5642"},"line_color":{"value":"#ed5642"},"top":{"field":"height"},"width":{"value":0.125},"x":{"field":"x"}},"id":"1124","type":"VBar"},{"attributes":{"data":{"density":["30.3%","37.9%","19.5%","28.4%","20.3%","16.8%","19.9%","35.0%","47.9%","36.4%","43.8%","53.8%","51.2%","50.8%","64.3%","64.9%","76.3%","58.7%","68.7%","60.3%","45.8%","17.2%","17.4%","15.8%"],"height":[0.31744,0.397312,0.2048,0.297984,0.212992,0.176128,0.208896,0.366592,0.50176,0.381952,0.458752,0.564224,0.536576,0.53248,0.673792,0.68096,0.799744,0.615424,0.719872,0.631808,0.480256,0.180224,0.182272,0.165888],"img_height":["128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px"],"img_width":["128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px"],"name":["0.attention.key","1.attention.key","2.attention.key","3.attention.key","4.attention.key","5.attention.key","6.attention.key","7.attention.key","8.attention.key","9.attention.key","10.attention.key","11.attention.key","12.attention.key","13.attention.key","14.attention.key","15.attention.key","16.attention.key","17.attention.key","18.attention.key","19.attention.key","20.attention.key","21.attention.key","22.attention.key","23.attention.key"],"parameters":["0.32","0.40","0.20","0.30","0.21","0.18","0.21","0.37","0.50","0.38","0.46","0.56","0.54","0.53","0.67","0.68","0.80","0.62","0.72","0.63","0.48","0.18","0.18","0.17"],"url":["/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_0_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_1_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_2_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_3_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_4_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_5_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_6_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_7_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_8_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_9_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_10_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_11_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_12_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_13_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_14_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_15_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_16_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_17_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_18_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_19_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_20_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_21_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_22_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_23_attention_self_key.png"],"x":[0.25,1.25,2.25,3.25,4.25,5.25,6.25,7.25,8.25,9.25,10.25,11.25,12.25,13.25,14.25,15.25,16.25,17.25,18.25,19.25,20.25,21.25,22.25,23.25]},"selected":{"id":"1153"},"selection_policy":{"id":"1152"}},"id":"1122","type":"ColumnDataSource"},{"attributes":{},"id":"1155","type":"Selection"},{"attributes":{},"id":"1154","type":"UnionRenderers"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#ed5642"},"line_alpha":{"value":0.1},"line_color":{"value":"#ed5642"},"top":{"field":"height"},"width":{"value":0.125},"x":{"field":"x"}},"id":"1125","type":"VBar"},{"attributes":{},"id":"1148","type":"BasicTickFormatter"},{"attributes":{},"id":"1157","type":"Selection"},{"attributes":{"label":{"value":"value"},"renderers":[{"id":"1132"}]},"id":"1143","type":"LegendItem"},{"attributes":{"fill_color":{"value":"#aa69f7"},"line_color":{"value":"#aa69f7"},"top":{"field":"height"},"width":{"value":0.125},"x":{"field":"x"}},"id":"1136","type":"VBar"},{"attributes":{"data":{"density":["34.4%","15.4%","15.4%","35.9%","17.0%","17.0%","17.9%","21.2%","21.2%","30.7%","24.2%","24.2%","21.6%","24.3%","24.3%","18.7%","25.3%","25.3%","20.5%","27.6%","27.6%","38.3%","27.9%","27.9%","39.3%","27.8%","27.8%","31.0%","29.4%","29.4%","39.5%","23.7%","23.7%","48.8%","26.3%","26.3%","47.3%","23.7%","23.7%","51.8%","28.5%","28.5%","57.6%","23.1%","23.1%","56.9%","22.3%","22.3%","68.9%","23.7%","23.7%","56.2%","21.7%","21.7%","57.2%","15.0%","15.0%","41.1%","9.3%","9.3%","26.7%","6.1%","6.1%","10.6%","3.1%","3.1%","11.4%","1.8%","1.8%","9.6%","3.4%","3.4%"],"height":[0.360448,0.647168,0.647168,0.376832,0.714752,0.714752,0.187392,0.887808,0.887808,0.321536,1.01376,1.01376,0.226304,1.017856,1.017856,0.195584,1.061888,1.061888,0.21504,1.156096,1.156096,0.401408,1.169408,1.169408,0.411648,1.164288,1.164288,0.324608,1.231872,1.231872,0.413696,0.995328,0.995328,0.512,1.103872,1.103872,0.495616,0.994304,0.994304,0.54272,1.196032,1.196032,0.60416,0.970752,0.970752,0.596992,0.93696,0.93696,0.722944,0.992256,0.992256,0.5888,0.910336,0.910336,0.600064,0.62976,0.62976,0.431104,0.388096,0.388096,0.279552,0.253952,0.253952,0.111616,0.130048,0.130048,0.119808,0.074752,0.074752,0.100352,0.142336,0.142336],"img_height":["128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px"],"img_width":["128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px"],"name":["0.attention.output","0.intermediate","0.output","1.attention.output","1.intermediate","1.output","2.attention.output","2.intermediate","2.output","3.attention.output","3.intermediate","3.output","4.attention.output","4.intermediate","4.output","5.attention.output","5.intermediate","5.output","6.attention.output","6.intermediate","6.output","7.attention.output","7.intermediate","7.output","8.attention.output","8.intermediate","8.output","9.attention.output","9.intermediate","9.output","10.attention.output","10.intermediate","10.output","11.attention.output","11.intermediate","11.output","12.attention.output","12.intermediate","12.output","13.attention.output","13.intermediate","13.output","14.attention.output","14.intermediate","14.output","15.attention.output","15.intermediate","15.output","16.attention.output","16.intermediate","16.output","17.attention.output","17.intermediate","17.output","18.attention.output","18.intermediate","18.output","19.attention.output","19.intermediate","19.output","20.attention.output","20.intermediate","20.output","21.attention.output","21.intermediate","21.output","22.attention.output","22.intermediate","22.output","23.attention.output","23.intermediate","23.output"],"parameters":["0.36","0.65","0.65","0.38","0.71","0.71","0.19","0.89","0.89","0.32","1.01","1.01","0.23","1.02","1.02","0.20","1.06","1.06","0.22","1.16","1.16","0.40","1.17","1.17","0.41","1.16","1.16","0.32","1.23","1.23","0.41","1.00","1.00","0.51","1.10","1.10","0.50","0.99","0.99","0.54","1.20","1.20","0.60","0.97","0.97","0.60","0.94","0.94","0.72","0.99","0.99","0.59","0.91","0.91","0.60","0.63","0.63","0.43","0.39","0.39","0.28","0.25","0.25","0.11","0.13","0.13","0.12","0.07","0.07","0.10","0.14","0.14"],"url":["/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_0_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_0_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_0_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_1_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_1_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_1_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_2_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_2_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_2_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_3_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_3_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_3_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_4_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_4_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_4_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_5_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_5_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_5_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_6_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_6_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_6_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_7_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_7_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_7_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_8_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_8_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_8_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_9_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_9_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_9_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_10_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_10_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_10_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_11_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_11_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_11_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_12_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_12_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_12_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_13_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_13_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_13_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_14_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_14_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_14_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_15_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_15_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_15_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_16_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_16_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_16_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_17_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_17_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_17_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_18_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_18_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_18_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_19_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_19_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_19_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_20_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_20_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_20_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_21_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_21_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_21_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_22_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_22_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_22_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_23_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_23_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_23_output_dense.png"],"x":[0.5833333333333334,0.75,0.9166666666666667,1.5833333333333333,1.75,1.9166666666666665,2.5833333333333335,2.75,2.916666666666667,3.5833333333333335,3.75,3.916666666666667,4.583333333333333,4.75,4.916666666666666,5.583333333333333,5.75,5.916666666666666,6.583333333333333,6.75,6.916666666666666,7.583333333333333,7.75,7.916666666666666,8.583333333333334,8.75,8.916666666666668,9.583333333333334,9.75,9.916666666666668,10.583333333333334,10.75,10.916666666666668,11.583333333333334,11.75,11.916666666666668,12.583333333333334,12.75,12.916666666666668,13.583333333333334,13.75,13.916666666666668,14.583333333333334,14.75,14.916666666666668,15.583333333333334,15.75,15.916666666666668,16.583333333333332,16.75,16.916666666666664,17.583333333333332,17.75,17.916666666666664,18.583333333333332,18.75,18.916666666666664,19.583333333333332,19.75,19.916666666666664,20.583333333333332,20.75,20.916666666666664,21.583333333333332,21.75,21.916666666666664,22.583333333333332,22.75,22.916666666666664,23.583333333333332,23.75,23.916666666666664]},"selected":{"id":"1157"},"selection_policy":{"id":"1156"}},"id":"1134","type":"ColumnDataSource"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#aa69f7"},"line_alpha":{"value":0.1},"line_color":{"value":"#aa69f7"},"top":{"field":"height"},"width":{"value":0.125},"x":{"field":"x"}},"id":"1137","type":"VBar"},{"attributes":{"axis_label":"Layer","formatter":{"id":"1148"},"minor_tick_line_color":null,"ticker":{"id":"1107"}},"id":"1106","type":"LinearAxis"},{"attributes":{},"id":"1107","type":"BasicTicker"},{"attributes":{"data_source":{"id":"1116"},"glyph":{"id":"1118"},"hover_glyph":null,"muted_glyph":null,"name":"query","nonselection_glyph":{"id":"1119"},"selection_glyph":null,"view":{"id":"1121"}},"id":"1120","type":"GlyphRenderer"},{"attributes":{},"id":"1151","type":"Selection"},{"attributes":{"start":0},"id":"1100","type":"DataRange1d"},{"attributes":{"label":{"value":"fully connected"},"renderers":[{"id":"1138"}]},"id":"1144","type":"LegendItem"},{"attributes":{},"id":"1104","type":"LinearScale"},{"attributes":{"data":{"density":["31.8%","34.0%","16.4%","26.9%","18.8%","17.6%","19.4%","35.4%","37.8%","28.7%","37.6%","44.5%","44.5%","50.7%","54.0%","54.1%","68.5%","54.7%","57.3%","43.8%","27.6%","12.1%","13.0%","11.2%"],"height":[0.333824,0.356352,0.172032,0.2816,0.196608,0.18432,0.203776,0.371712,0.396288,0.301056,0.39424,0.466944,0.466944,0.531456,0.566272,0.567296,0.717824,0.57344,0.601088,0.458752,0.289792,0.126976,0.136192,0.11776],"img_height":["128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px"],"img_width":["128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px"],"name":["0.attention.value","1.attention.value","2.attention.value","3.attention.value","4.attention.value","5.attention.value","6.attention.value","7.attention.value","8.attention.value","9.attention.value","10.attention.value","11.attention.value","12.attention.value","13.attention.value","14.attention.value","15.attention.value","16.attention.value","17.attention.value","18.attention.value","19.attention.value","20.attention.value","21.attention.value","22.attention.value","23.attention.value"],"parameters":["0.33","0.36","0.17","0.28","0.20","0.18","0.20","0.37","0.40","0.30","0.39","0.47","0.47","0.53","0.57","0.57","0.72","0.57","0.60","0.46","0.29","0.13","0.14","0.12"],"url":["/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_0_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_1_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_2_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_3_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_4_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_5_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_6_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_7_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_8_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_9_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_10_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_11_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_12_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_13_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_14_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_15_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_16_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_17_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_18_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_19_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_20_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_21_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_22_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_23_attention_self_value.png"],"x":[0.41666666666666663,1.4166666666666665,2.416666666666667,3.416666666666667,4.416666666666666,5.416666666666666,6.416666666666666,7.416666666666666,8.416666666666668,9.416666666666668,10.416666666666668,11.416666666666668,12.416666666666668,13.416666666666668,14.416666666666668,15.416666666666668,16.416666666666664,17.416666666666664,18.416666666666664,19.416666666666664,20.416666666666664,21.416666666666664,22.416666666666664,23.416666666666664]},"selected":{"id":"1155"},"selection_policy":{"id":"1154"}},"id":"1128","type":"ColumnDataSource"},{"attributes":{"axis":{"id":"1110"},"dimension":1,"ticker":null},"id":"1113","type":"Grid"},{"attributes":{"label":{"value":"key"},"renderers":[{"id":"1126"}]},"id":"1142","type":"LegendItem"}],"root_ids":["1095"]},"title":"Bokeh Application","version":"2.2.3"}}';
119
+ var render_items = [{"docid":"244ac3f3-9c39-451a-b6fd-a9168f07e592","root_ids":["1095"],"roots":{"1095":"3da5dac6-12de-4334-845b-7925fac4bff8"}}];
120
+ root.Bokeh.embed.embed_items(docs_json, render_items);
121
+
122
+ }
123
+ if (root.Bokeh !== undefined) {
124
+ embed_document(root);
125
+ } else {
126
+ var attempts = 0;
127
+ var timer = setInterval(function(root) {
128
+ if (root.Bokeh !== undefined) {
129
+ clearInterval(timer);
130
+ embed_document(root);
131
+ } else {
132
+ attempts++;
133
+ if (attempts > 100) {
134
+ clearInterval(timer);
135
+ console.log("Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing");
136
+ }
137
+ }
138
+ }, 10, root)
139
+ }
140
+ })(window);
141
+ });
142
+ };
143
+ if (document.readyState != "loading") fn();
144
+ else document.addEventListener("DOMContentLoaded", fn);
145
+ })();
146
+ },
147
+ function(Bokeh) {
148
+
149
+
150
+ }
151
+ ];
152
+
153
+ function run_inline_js() {
154
+
155
+ for (var i = 0; i < inline_js.length; i++) {
156
+ inline_js[i].call(root, root.Bokeh);
157
+ }
158
+
159
+ }
160
+
161
+ if (root._bokeh_is_loading === 0) {
162
+ console.debug("Bokeh: BokehJS loaded, going straight to plotting");
163
+ run_inline_js();
164
+ } else {
165
+ load_libs(css_urls, js_urls, function() {
166
+ console.debug("Bokeh: BokehJS plotting callback run at", now());
167
+ run_inline_js();
168
+ });
169
+ }
170
+ }(window));
171
+ };
172
+ if (document.readyState != "loading") fn();
173
+ else document.addEventListener("DOMContentLoaded", fn);
174
+ })();
model_card/images/layer_0_attention_output_dense.png ADDED
model_card/images/layer_0_attention_self_key.png ADDED
model_card/images/layer_0_attention_self_query.png ADDED
model_card/images/layer_0_attention_self_value.png ADDED
model_card/images/layer_0_intermediate_dense.png ADDED
model_card/images/layer_0_output_dense.png ADDED
model_card/images/layer_10_attention_output_dense.png ADDED
model_card/images/layer_10_attention_self_key.png ADDED
model_card/images/layer_10_attention_self_query.png ADDED
model_card/images/layer_10_attention_self_value.png ADDED
model_card/images/layer_10_intermediate_dense.png ADDED
model_card/images/layer_10_output_dense.png ADDED
model_card/images/layer_11_attention_output_dense.png ADDED
model_card/images/layer_11_attention_self_key.png ADDED
model_card/images/layer_11_attention_self_query.png ADDED
model_card/images/layer_11_attention_self_value.png ADDED
model_card/images/layer_11_intermediate_dense.png ADDED
model_card/images/layer_11_output_dense.png ADDED
model_card/images/layer_12_attention_output_dense.png ADDED
model_card/images/layer_12_attention_self_key.png ADDED
model_card/images/layer_12_attention_self_query.png ADDED
model_card/images/layer_12_attention_self_value.png ADDED
model_card/images/layer_12_intermediate_dense.png ADDED
model_card/images/layer_12_output_dense.png ADDED
model_card/images/layer_13_attention_output_dense.png ADDED
model_card/images/layer_13_attention_self_key.png ADDED
model_card/images/layer_13_attention_self_query.png ADDED
model_card/images/layer_13_attention_self_value.png ADDED
model_card/images/layer_13_intermediate_dense.png ADDED
model_card/images/layer_13_output_dense.png ADDED
model_card/images/layer_14_attention_output_dense.png ADDED
model_card/images/layer_14_attention_self_key.png ADDED
model_card/images/layer_14_attention_self_query.png ADDED
model_card/images/layer_14_attention_self_value.png ADDED
model_card/images/layer_14_intermediate_dense.png ADDED
model_card/images/layer_14_output_dense.png ADDED
model_card/images/layer_15_attention_output_dense.png ADDED
model_card/images/layer_15_attention_self_key.png ADDED
model_card/images/layer_15_attention_self_query.png ADDED
model_card/images/layer_15_attention_self_value.png ADDED
model_card/images/layer_15_intermediate_dense.png ADDED
model_card/images/layer_15_output_dense.png ADDED
model_card/images/layer_16_attention_output_dense.png ADDED
model_card/images/layer_16_attention_self_key.png ADDED
model_card/images/layer_16_attention_self_query.png ADDED
model_card/images/layer_16_attention_self_value.png ADDED
model_card/images/layer_16_intermediate_dense.png ADDED