Adding modes, graphs and metadata.
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +97 -0
- config.json +228 -0
- model_card/density_info.js +174 -0
- model_card/images/layer_0_attention_output_dense.png +0 -0
- model_card/images/layer_0_attention_self_key.png +0 -0
- model_card/images/layer_0_attention_self_query.png +0 -0
- model_card/images/layer_0_attention_self_value.png +0 -0
- model_card/images/layer_0_intermediate_dense.png +0 -0
- model_card/images/layer_0_output_dense.png +0 -0
- model_card/images/layer_10_attention_output_dense.png +0 -0
- model_card/images/layer_10_attention_self_key.png +0 -0
- model_card/images/layer_10_attention_self_query.png +0 -0
- model_card/images/layer_10_attention_self_value.png +0 -0
- model_card/images/layer_10_intermediate_dense.png +0 -0
- model_card/images/layer_10_output_dense.png +0 -0
- model_card/images/layer_11_attention_output_dense.png +0 -0
- model_card/images/layer_11_attention_self_key.png +0 -0
- model_card/images/layer_11_attention_self_query.png +0 -0
- model_card/images/layer_11_attention_self_value.png +0 -0
- model_card/images/layer_11_intermediate_dense.png +0 -0
- model_card/images/layer_11_output_dense.png +0 -0
- model_card/images/layer_12_attention_output_dense.png +0 -0
- model_card/images/layer_12_attention_self_key.png +0 -0
- model_card/images/layer_12_attention_self_query.png +0 -0
- model_card/images/layer_12_attention_self_value.png +0 -0
- model_card/images/layer_12_intermediate_dense.png +0 -0
- model_card/images/layer_12_output_dense.png +0 -0
- model_card/images/layer_13_attention_output_dense.png +0 -0
- model_card/images/layer_13_attention_self_key.png +0 -0
- model_card/images/layer_13_attention_self_query.png +0 -0
- model_card/images/layer_13_attention_self_value.png +0 -0
- model_card/images/layer_13_intermediate_dense.png +0 -0
- model_card/images/layer_13_output_dense.png +0 -0
- model_card/images/layer_14_attention_output_dense.png +0 -0
- model_card/images/layer_14_attention_self_key.png +0 -0
- model_card/images/layer_14_attention_self_query.png +0 -0
- model_card/images/layer_14_attention_self_value.png +0 -0
- model_card/images/layer_14_intermediate_dense.png +0 -0
- model_card/images/layer_14_output_dense.png +0 -0
- model_card/images/layer_15_attention_output_dense.png +0 -0
- model_card/images/layer_15_attention_self_key.png +0 -0
- model_card/images/layer_15_attention_self_query.png +0 -0
- model_card/images/layer_15_attention_self_value.png +0 -0
- model_card/images/layer_15_intermediate_dense.png +0 -0
- model_card/images/layer_15_output_dense.png +0 -0
- model_card/images/layer_16_attention_output_dense.png +0 -0
- model_card/images/layer_16_attention_self_key.png +0 -0
- model_card/images/layer_16_attention_self_query.png +0 -0
- model_card/images/layer_16_attention_self_value.png +0 -0
- model_card/images/layer_16_intermediate_dense.png +0 -0
README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
thumbnail:
|
4 |
+
license: mit
|
5 |
+
tags:
|
6 |
+
- question-answering
|
7 |
+
- bert
|
8 |
+
- bert-base
|
9 |
+
datasets:
|
10 |
+
- squad
|
11 |
+
metrics:
|
12 |
+
- squad
|
13 |
+
widget:
|
14 |
+
- text: "Where is the Eiffel Tower located?"
|
15 |
+
context: "The Eiffel Tower is a wrought-iron lattice tower on the Champ de Mars in Paris, France. It is named after the engineer Gustave Eiffel, whose company designed and built the tower."
|
16 |
+
- text: "Who is Frederic Chopin?"
|
17 |
+
context: "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano."
|
18 |
+
---
|
19 |
+
|
20 |
+
## BERT-base uncased model fine-tuned on SQuAD v1
|
21 |
+
|
22 |
+
This model was created using the [nn_pruning](https://github.com/huggingface/nn_pruning) python library: the **linear layers contains 25.0%** of the original weights.
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
The model contains **32.0%** of the original weights **overall** (the embeddings account for a significant part of the model, and they are not pruned by this method).
|
27 |
+
|
28 |
+
With a simple resizing of the linear matrices it ran **0.69x as fast as BERT-base** on the evaluation.
|
29 |
+
This is possible because the pruning method lead to structured matrices: to visualize them, hover below on the plot to see the non-zero/zero parts of each matrix.
|
30 |
+
|
31 |
+
<div class="graph"><script src="/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/density_info.js" id="3da5dac6-12de-4334-845b-7925fac4bff8"></script></div>
|
32 |
+
|
33 |
+
In terms of accuracy, its **F1 is 83.22**, compared with 85.85 for BERT-base, a **F1 drop of 2.63**.
|
34 |
+
|
35 |
+
## Fine-Pruning details
|
36 |
+
This model was fine-tuned from the HuggingFace [BERT](https://www.aclweb.org/anthology/N19-1423/) base uncased checkpoint on [SQuAD1.1](https://rajpurkar.github.io/SQuAD-explorer), and distilled from the model [madlag/bert-large-uncased-whole-word-masking-finetuned-squadv2](https://huggingface.co/madlag/bert-large-uncased-whole-word-masking-finetuned-squadv2).
|
37 |
+
This model is case-insensitive: it does not make a difference between english and English.
|
38 |
+
|
39 |
+
A side-effect of the block pruning is that some of the attention heads are completely removed: 155 heads were removed on a total of 384 (40.4%).
|
40 |
+
Here is a detailed view on how the remaining heads are distributed in the network after pruning.
|
41 |
+
<div class="graph"><script src="/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/pruning_info.js" id="f08c927a-abe6-416a-9256-3341cf71e778"></script></div>
|
42 |
+
|
43 |
+
## Details of the SQuAD1.1 dataset
|
44 |
+
|
45 |
+
| Dataset | Split | # samples |
|
46 |
+
| -------- | ----- | --------- |
|
47 |
+
| SQuAD 2.0 | train | 130.6K |
|
48 |
+
| SQuAD 2.0 | eval | 11.1k |
|
49 |
+
|
50 |
+
### Fine-tuning
|
51 |
+
- Python: `3.8.5`
|
52 |
+
|
53 |
+
- Machine specs:
|
54 |
+
|
55 |
+
```CPU: Intel(R) Core(TM) i7-6700K CPU
|
56 |
+
Memory: 64 GiB
|
57 |
+
GPUs: 1 GeForce GTX 3090, with 24GiB memory
|
58 |
+
GPU driver: 455.23.05, CUDA: 11.1
|
59 |
+
```
|
60 |
+
|
61 |
+
### Results
|
62 |
+
|
63 |
+
**Pytorch model file size**: `1119M` (original BERT: `438M`)
|
64 |
+
|
65 |
+
| Metric | # Value | # Original ([Table 2](https://www.aclweb.org/anthology/N19-1423.pdf))| Variation |
|
66 |
+
| ------ | --------- | --------- | --------- |
|
67 |
+
| **EM** | **80.19** | **80.8** | **-0.61**|
|
68 |
+
| **F1** | **83.22** | **88.5** | **-5.28**|
|
69 |
+
|
70 |
+
## Example Usage
|
71 |
+
Install nn_pruning: it contains the optimization script, which just pack the linear layers into smaller ones by removing empty rows/columns.
|
72 |
+
|
73 |
+
`pip install nn_pruning`
|
74 |
+
|
75 |
+
Then you can use the `transformers library` almost as usual: you just have to call `optimize_model` when the pipeline has loaded.
|
76 |
+
|
77 |
+
```python
|
78 |
+
from transformers import pipeline
|
79 |
+
from nn_pruning.inference_model_patcher import optimize_model
|
80 |
+
|
81 |
+
qa_pipeline = pipeline(
|
82 |
+
"question-answering",
|
83 |
+
model="madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1",
|
84 |
+
tokenizer="madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1"
|
85 |
+
)
|
86 |
+
|
87 |
+
print("BERT-base parameters: 110M")
|
88 |
+
print(f"Parameters count (includes head pruning)={int(qa_pipeline.model.num_parameters() / 1E6)}M")
|
89 |
+
qa_pipeline.model = optimize_model(qa_pipeline.model, "dense")
|
90 |
+
|
91 |
+
print(f"Parameters count after optimization={int(qa_pipeline.model.num_parameters() / 1E6)}M")
|
92 |
+
predictions = qa_pipeline({
|
93 |
+
'context': "Frédéric François Chopin, born Fryderyk Franciszek Chopin (1 March 1810 – 17 October 1849), was a Polish composer and virtuoso pianist of the Romantic era who wrote primarily for solo piano.",
|
94 |
+
'question': "Who is Frederic Chopin?",
|
95 |
+
})
|
96 |
+
print("Predictions", predictions)
|
97 |
+
```
|
config.json
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/tmp/tmp_5fri74d",
|
3 |
+
"architectures": [
|
4 |
+
"BertForQuestionAnswering"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"gradient_checkpointing": false,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 1024,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 4096,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 16,
|
17 |
+
"num_hidden_layers": 24,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"pruned_heads": {
|
21 |
+
"0": [
|
22 |
+
0,
|
23 |
+
3,
|
24 |
+
4,
|
25 |
+
5,
|
26 |
+
9,
|
27 |
+
13,
|
28 |
+
15
|
29 |
+
],
|
30 |
+
"1": [
|
31 |
+
0,
|
32 |
+
1,
|
33 |
+
7,
|
34 |
+
9,
|
35 |
+
10,
|
36 |
+
13,
|
37 |
+
14
|
38 |
+
],
|
39 |
+
"2": [
|
40 |
+
0,
|
41 |
+
1,
|
42 |
+
4,
|
43 |
+
6,
|
44 |
+
7,
|
45 |
+
8,
|
46 |
+
9,
|
47 |
+
11,
|
48 |
+
12,
|
49 |
+
13,
|
50 |
+
14,
|
51 |
+
15
|
52 |
+
],
|
53 |
+
"3": [
|
54 |
+
0,
|
55 |
+
3,
|
56 |
+
5,
|
57 |
+
6,
|
58 |
+
7,
|
59 |
+
8,
|
60 |
+
9,
|
61 |
+
13,
|
62 |
+
14,
|
63 |
+
15
|
64 |
+
],
|
65 |
+
"4": [
|
66 |
+
0,
|
67 |
+
2,
|
68 |
+
3,
|
69 |
+
5,
|
70 |
+
6,
|
71 |
+
7,
|
72 |
+
9,
|
73 |
+
10,
|
74 |
+
11,
|
75 |
+
12,
|
76 |
+
14
|
77 |
+
],
|
78 |
+
"5": [
|
79 |
+
3,
|
80 |
+
4,
|
81 |
+
5,
|
82 |
+
6,
|
83 |
+
7,
|
84 |
+
8,
|
85 |
+
9,
|
86 |
+
12,
|
87 |
+
13,
|
88 |
+
14,
|
89 |
+
15
|
90 |
+
],
|
91 |
+
"6": [
|
92 |
+
0,
|
93 |
+
1,
|
94 |
+
2,
|
95 |
+
3,
|
96 |
+
4,
|
97 |
+
7,
|
98 |
+
8,
|
99 |
+
9,
|
100 |
+
10,
|
101 |
+
11,
|
102 |
+
12,
|
103 |
+
15
|
104 |
+
],
|
105 |
+
"7": [
|
106 |
+
3,
|
107 |
+
5,
|
108 |
+
8,
|
109 |
+
9,
|
110 |
+
10,
|
111 |
+
11,
|
112 |
+
12,
|
113 |
+
13
|
114 |
+
],
|
115 |
+
"8": [
|
116 |
+
3,
|
117 |
+
5,
|
118 |
+
7,
|
119 |
+
8,
|
120 |
+
9,
|
121 |
+
11,
|
122 |
+
12
|
123 |
+
],
|
124 |
+
"9": [
|
125 |
+
0,
|
126 |
+
1,
|
127 |
+
2,
|
128 |
+
5,
|
129 |
+
6,
|
130 |
+
7,
|
131 |
+
13,
|
132 |
+
14
|
133 |
+
],
|
134 |
+
"10": [
|
135 |
+
1,
|
136 |
+
2,
|
137 |
+
4,
|
138 |
+
5,
|
139 |
+
6,
|
140 |
+
8,
|
141 |
+
11,
|
142 |
+
13
|
143 |
+
],
|
144 |
+
"11": [
|
145 |
+
2,
|
146 |
+
5,
|
147 |
+
6,
|
148 |
+
8,
|
149 |
+
12,
|
150 |
+
15
|
151 |
+
],
|
152 |
+
"12": [
|
153 |
+
0,
|
154 |
+
2,
|
155 |
+
6,
|
156 |
+
9,
|
157 |
+
13
|
158 |
+
],
|
159 |
+
"13": [
|
160 |
+
2,
|
161 |
+
3,
|
162 |
+
6,
|
163 |
+
10,
|
164 |
+
12,
|
165 |
+
15
|
166 |
+
],
|
167 |
+
"14": [
|
168 |
+
10,
|
169 |
+
5
|
170 |
+
],
|
171 |
+
"15": [
|
172 |
+
0,
|
173 |
+
9
|
174 |
+
],
|
175 |
+
"16": [],
|
176 |
+
"17": [
|
177 |
+
1,
|
178 |
+
4,
|
179 |
+
12
|
180 |
+
],
|
181 |
+
"18": [
|
182 |
+
11,
|
183 |
+
4
|
184 |
+
],
|
185 |
+
"19": [
|
186 |
+
5
|
187 |
+
],
|
188 |
+
"20": [
|
189 |
+
0,
|
190 |
+
1,
|
191 |
+
12
|
192 |
+
],
|
193 |
+
"21": [
|
194 |
+
0,
|
195 |
+
2,
|
196 |
+
3,
|
197 |
+
4,
|
198 |
+
8,
|
199 |
+
10,
|
200 |
+
11,
|
201 |
+
12,
|
202 |
+
15
|
203 |
+
],
|
204 |
+
"22": [
|
205 |
+
0,
|
206 |
+
1,
|
207 |
+
3,
|
208 |
+
7,
|
209 |
+
9,
|
210 |
+
10,
|
211 |
+
11,
|
212 |
+
13
|
213 |
+
],
|
214 |
+
"23": [
|
215 |
+
2,
|
216 |
+
4,
|
217 |
+
7,
|
218 |
+
8,
|
219 |
+
9,
|
220 |
+
10,
|
221 |
+
13
|
222 |
+
]
|
223 |
+
},
|
224 |
+
"transformers_version": "4.7.0.dev0",
|
225 |
+
"type_vocab_size": 2,
|
226 |
+
"use_cache": true,
|
227 |
+
"vocab_size": 30522
|
228 |
+
}
|
model_card/density_info.js
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(function() {
|
2 |
+
var fn = function() {
|
3 |
+
|
4 |
+
(function(root) {
|
5 |
+
function now() {
|
6 |
+
return new Date();
|
7 |
+
}
|
8 |
+
|
9 |
+
var force = false;
|
10 |
+
|
11 |
+
if (typeof root._bokeh_onload_callbacks === "undefined" || force === true) {
|
12 |
+
root._bokeh_onload_callbacks = [];
|
13 |
+
root._bokeh_is_loading = undefined;
|
14 |
+
}
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
var element = document.getElementById("3da5dac6-12de-4334-845b-7925fac4bff8");
|
20 |
+
if (element == null) {
|
21 |
+
console.warn("Bokeh: autoload.js configured with elementid '3da5dac6-12de-4334-845b-7925fac4bff8' but no matching script tag was found.")
|
22 |
+
}
|
23 |
+
|
24 |
+
|
25 |
+
function run_callbacks() {
|
26 |
+
try {
|
27 |
+
root._bokeh_onload_callbacks.forEach(function(callback) {
|
28 |
+
if (callback != null)
|
29 |
+
callback();
|
30 |
+
});
|
31 |
+
} finally {
|
32 |
+
delete root._bokeh_onload_callbacks
|
33 |
+
}
|
34 |
+
console.debug("Bokeh: all callbacks have finished");
|
35 |
+
}
|
36 |
+
|
37 |
+
function load_libs(css_urls, js_urls, callback) {
|
38 |
+
if (css_urls == null) css_urls = [];
|
39 |
+
if (js_urls == null) js_urls = [];
|
40 |
+
|
41 |
+
root._bokeh_onload_callbacks.push(callback);
|
42 |
+
if (root._bokeh_is_loading > 0) {
|
43 |
+
console.debug("Bokeh: BokehJS is being loaded, scheduling callback at", now());
|
44 |
+
return null;
|
45 |
+
}
|
46 |
+
if (js_urls == null || js_urls.length === 0) {
|
47 |
+
run_callbacks();
|
48 |
+
return null;
|
49 |
+
}
|
50 |
+
console.debug("Bokeh: BokehJS not loaded, scheduling load and callback at", now());
|
51 |
+
root._bokeh_is_loading = css_urls.length + js_urls.length;
|
52 |
+
|
53 |
+
function on_load() {
|
54 |
+
root._bokeh_is_loading--;
|
55 |
+
if (root._bokeh_is_loading === 0) {
|
56 |
+
console.debug("Bokeh: all BokehJS libraries/stylesheets loaded");
|
57 |
+
run_callbacks()
|
58 |
+
}
|
59 |
+
}
|
60 |
+
|
61 |
+
function on_error() {
|
62 |
+
console.error("failed to load " + url);
|
63 |
+
}
|
64 |
+
|
65 |
+
for (var i = 0; i < css_urls.length; i++) {
|
66 |
+
var url = css_urls[i];
|
67 |
+
const element = document.createElement("link");
|
68 |
+
element.onload = on_load;
|
69 |
+
element.onerror = on_error;
|
70 |
+
element.rel = "stylesheet";
|
71 |
+
element.type = "text/css";
|
72 |
+
element.href = url;
|
73 |
+
console.debug("Bokeh: injecting link tag for BokehJS stylesheet: ", url);
|
74 |
+
document.body.appendChild(element);
|
75 |
+
}
|
76 |
+
|
77 |
+
const hashes = {"https://cdn.bokeh.org/bokeh/release/bokeh-2.2.3.min.js": "T2yuo9Oe71Cz/I4X9Ac5+gpEa5a8PpJCDlqKYO0CfAuEszu1JrXLl8YugMqYe3sM", "https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.2.3.min.js": "98GDGJ0kOMCUMUePhksaQ/GYgB3+NH9h996V88sh3aOiUNX3N+fLXAtry6xctSZ6", "https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.2.3.min.js": "89bArO+nlbP3sgakeHjCo1JYxYR5wufVgA3IbUvDY+K7w4zyxJqssu7wVnfeKCq8"};
|
78 |
+
|
79 |
+
for (var i = 0; i < js_urls.length; i++) {
|
80 |
+
var url = js_urls[i];
|
81 |
+
var element = document.createElement('script');
|
82 |
+
element.onload = on_load;
|
83 |
+
element.onerror = on_error;
|
84 |
+
element.async = false;
|
85 |
+
element.src = url;
|
86 |
+
if (url in hashes) {
|
87 |
+
element.crossOrigin = "anonymous";
|
88 |
+
element.integrity = "sha384-" + hashes[url];
|
89 |
+
}
|
90 |
+
console.debug("Bokeh: injecting script tag for BokehJS library: ", url);
|
91 |
+
document.head.appendChild(element);
|
92 |
+
}
|
93 |
+
};
|
94 |
+
|
95 |
+
function inject_raw_css(css) {
|
96 |
+
const element = document.createElement("style");
|
97 |
+
element.appendChild(document.createTextNode(css));
|
98 |
+
document.body.appendChild(element);
|
99 |
+
}
|
100 |
+
|
101 |
+
|
102 |
+
var js_urls = ["https://cdn.bokeh.org/bokeh/release/bokeh-2.2.3.min.js", "https://cdn.bokeh.org/bokeh/release/bokeh-widgets-2.2.3.min.js", "https://cdn.bokeh.org/bokeh/release/bokeh-tables-2.2.3.min.js"];
|
103 |
+
var css_urls = [];
|
104 |
+
|
105 |
+
|
106 |
+
var inline_js = [
|
107 |
+
function(Bokeh) {
|
108 |
+
Bokeh.set_log_level("info");
|
109 |
+
},
|
110 |
+
|
111 |
+
function(Bokeh) {
|
112 |
+
(function() {
|
113 |
+
var fn = function() {
|
114 |
+
Bokeh.safely(function() {
|
115 |
+
(function(root) {
|
116 |
+
function embed_document(root) {
|
117 |
+
|
118 |
+
var docs_json = '{"244ac3f3-9c39-451a-b6fd-a9168f07e592":{"roots":{"references":[{"attributes":{"above":[{"id":"1140"}],"below":[{"id":"1106"}],"center":[{"id":"1109"},{"id":"1113"}],"left":[{"id":"1110"}],"outline_line_color":null,"plot_height":300,"plot_width":505,"renderers":[{"id":"1120"},{"id":"1126"},{"id":"1132"},{"id":"1138"}],"title":{"id":"1096"},"toolbar":{"id":"1114"},"x_range":{"id":"1098"},"x_scale":{"id":"1102"},"y_range":{"id":"1100"},"y_scale":{"id":"1104"}},"id":"1095","subtype":"Figure","type":"Plot"},{"attributes":{"source":{"id":"1116"}},"id":"1121","type":"CDSView"},{"attributes":{"data_source":{"id":"1128"},"glyph":{"id":"1130"},"hover_glyph":null,"muted_glyph":null,"name":"value","nonselection_glyph":{"id":"1131"},"selection_glyph":null,"view":{"id":"1133"}},"id":"1132","type":"GlyphRenderer"},{"attributes":{"data_source":{"id":"1134"},"glyph":{"id":"1136"},"hover_glyph":null,"muted_glyph":null,"name":"fully connected","nonselection_glyph":{"id":"1137"},"selection_glyph":null,"view":{"id":"1139"}},"id":"1138","type":"GlyphRenderer"},{"attributes":{"source":{"id":"1122"}},"id":"1127","type":"CDSView"},{"attributes":{},"id":"1098","type":"DataRange1d"},{"attributes":{"items":[{"id":"1141"},{"id":"1142"},{"id":"1143"},{"id":"1144"}],"location":[10,0],"orientation":"horizontal"},"id":"1140","type":"Legend"},{"attributes":{"fill_color":{"value":"#6573f7"},"line_color":{"value":"#6573f7"},"top":{"field":"height"},"width":{"value":0.125},"x":{"field":"x"}},"id":"1118","type":"VBar"},{"attributes":{"axis":{"id":"1106"},"grid_line_color":null,"ticker":null},"id":"1109","type":"Grid"},{"attributes":{},"id":"1156","type":"UnionRenderers"},{"attributes":{"label":{"value":"query"},"renderers":[{"id":"1120"}]},"id":"1141","type":"LegendItem"},{"attributes":{"fill_color":{"value":"#20cb97"},"line_color":{"value":"#20cb97"},"top":{"field":"height"},"width":{"value":0.125},"x":{"field":"x"}},"id":"1130","type":"VBar"},{"attributes":{"source":{"id":"1134"}},"id":"1139","type":"CDSView"},{"attributes":{"text":"Transformer Layers"},"id":"1096","type":"Title"},{"attributes":{},"id":"1111","type":"BasicTicker"},{"attributes":{"callback":null,"tooltips":"\\n <div>\\n <div style=\\"margin-bottom:10px\\">\\n <span style=\\"font-size: 15px;\\"><b>@name</b><br/>density=@density</span>\\n </div>\\n <div> \\n <img\\n src=\\"@url\\" height=\\"@img_height\\" width=\\"@img_width\\" alt=\\"@url\\"\\n style=\\"float: left; margin: 0px 15px 15px 0px;\\"\\n border=\\"0\\"\\n />\\n </div>\\n </div>\\n "},"id":"1094","type":"HoverTool"},{"attributes":{"axis_label":"Parameters (M)","formatter":{"id":"1146"},"minor_tick_line_color":null,"ticker":{"id":"1111"}},"id":"1110","type":"LinearAxis"},{"attributes":{},"id":"1102","type":"LinearScale"},{"attributes":{"data_source":{"id":"1122"},"glyph":{"id":"1124"},"hover_glyph":null,"muted_glyph":null,"name":"key","nonselection_glyph":{"id":"1125"},"selection_glyph":null,"view":{"id":"1127"}},"id":"1126","type":"GlyphRenderer"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#6573f7"},"line_alpha":{"value":0.1},"line_color":{"value":"#6573f7"},"top":{"field":"height"},"width":{"value":0.125},"x":{"field":"x"}},"id":"1119","type":"VBar"},{"attributes":{},"id":"1150","type":"UnionRenderers"},{"attributes":{},"id":"1152","type":"UnionRenderers"},{"attributes":{},"id":"1146","type":"BasicTickFormatter"},{"attributes":{"data":{"density":["30.3%","39.0%","18.8%","25.1%","19.0%","17.0%","18.0%","34.7%","45.3%","37.1%","43.1%","52.2%","48.8%","50.2%","61.6%","64.0%","72.0%","56.8%","67.5%","58.5%","47.3%","18.1%","17.1%","13.7%"],"height":[0.31744,0.408576,0.197632,0.263168,0.19968,0.178176,0.188416,0.36352,0.475136,0.38912,0.451584,0.54784,0.512,0.526336,0.646144,0.67072,0.754688,0.595968,0.707584,0.613376,0.495616,0.18944,0.1792,0.14336],"img_height":["128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px"],"img_width":["128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px"],"name":["0.attention.query","1.attention.query","2.attention.query","3.attention.query","4.attention.query","5.attention.query","6.attention.query","7.attention.query","8.attention.query","9.attention.query","10.attention.query","11.attention.query","12.attention.query","13.attention.query","14.attention.query","15.attention.query","16.attention.query","17.attention.query","18.attention.query","19.attention.query","20.attention.query","21.attention.query","22.attention.query","23.attention.query"],"parameters":["0.32","0.41","0.20","0.26","0.20","0.18","0.19","0.36","0.48","0.39","0.45","0.55","0.51","0.53","0.65","0.67","0.75","0.60","0.71","0.61","0.50","0.19","0.18","0.14"],"url":["/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_0_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_1_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_2_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_3_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_4_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_5_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_6_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_7_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_8_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_9_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_10_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_11_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_12_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_13_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_14_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_15_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_16_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_17_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_18_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_19_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_20_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_21_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_22_attention_self_query.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_23_attention_self_query.png"],"x":[0.08333333333333333,1.0833333333333333,2.0833333333333335,3.0833333333333335,4.083333333333333,5.083333333333333,6.083333333333333,7.083333333333333,8.083333333333334,9.083333333333334,10.083333333333334,11.083333333333334,12.083333333333334,13.083333333333334,14.083333333333334,15.083333333333334,16.083333333333332,17.083333333333332,18.083333333333332,19.083333333333332,20.083333333333332,21.083333333333332,22.083333333333332,23.083333333333332]},"selected":{"id":"1151"},"selection_policy":{"id":"1150"}},"id":"1116","type":"ColumnDataSource"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#20cb97"},"line_alpha":{"value":0.1},"line_color":{"value":"#20cb97"},"top":{"field":"height"},"width":{"value":0.125},"x":{"field":"x"}},"id":"1131","type":"VBar"},{"attributes":{"active_drag":"auto","active_inspect":"auto","active_multi":null,"active_scroll":"auto","active_tap":"auto","tools":[{"id":"1094"}]},"id":"1114","type":"Toolbar"},{"attributes":{},"id":"1153","type":"Selection"},{"attributes":{"source":{"id":"1128"}},"id":"1133","type":"CDSView"},{"attributes":{"fill_color":{"value":"#ed5642"},"line_color":{"value":"#ed5642"},"top":{"field":"height"},"width":{"value":0.125},"x":{"field":"x"}},"id":"1124","type":"VBar"},{"attributes":{"data":{"density":["30.3%","37.9%","19.5%","28.4%","20.3%","16.8%","19.9%","35.0%","47.9%","36.4%","43.8%","53.8%","51.2%","50.8%","64.3%","64.9%","76.3%","58.7%","68.7%","60.3%","45.8%","17.2%","17.4%","15.8%"],"height":[0.31744,0.397312,0.2048,0.297984,0.212992,0.176128,0.208896,0.366592,0.50176,0.381952,0.458752,0.564224,0.536576,0.53248,0.673792,0.68096,0.799744,0.615424,0.719872,0.631808,0.480256,0.180224,0.182272,0.165888],"img_height":["128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px"],"img_width":["128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px"],"name":["0.attention.key","1.attention.key","2.attention.key","3.attention.key","4.attention.key","5.attention.key","6.attention.key","7.attention.key","8.attention.key","9.attention.key","10.attention.key","11.attention.key","12.attention.key","13.attention.key","14.attention.key","15.attention.key","16.attention.key","17.attention.key","18.attention.key","19.attention.key","20.attention.key","21.attention.key","22.attention.key","23.attention.key"],"parameters":["0.32","0.40","0.20","0.30","0.21","0.18","0.21","0.37","0.50","0.38","0.46","0.56","0.54","0.53","0.67","0.68","0.80","0.62","0.72","0.63","0.48","0.18","0.18","0.17"],"url":["/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_0_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_1_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_2_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_3_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_4_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_5_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_6_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_7_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_8_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_9_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_10_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_11_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_12_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_13_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_14_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_15_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_16_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_17_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_18_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_19_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_20_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_21_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_22_attention_self_key.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_23_attention_self_key.png"],"x":[0.25,1.25,2.25,3.25,4.25,5.25,6.25,7.25,8.25,9.25,10.25,11.25,12.25,13.25,14.25,15.25,16.25,17.25,18.25,19.25,20.25,21.25,22.25,23.25]},"selected":{"id":"1153"},"selection_policy":{"id":"1152"}},"id":"1122","type":"ColumnDataSource"},{"attributes":{},"id":"1155","type":"Selection"},{"attributes":{},"id":"1154","type":"UnionRenderers"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#ed5642"},"line_alpha":{"value":0.1},"line_color":{"value":"#ed5642"},"top":{"field":"height"},"width":{"value":0.125},"x":{"field":"x"}},"id":"1125","type":"VBar"},{"attributes":{},"id":"1148","type":"BasicTickFormatter"},{"attributes":{},"id":"1157","type":"Selection"},{"attributes":{"label":{"value":"value"},"renderers":[{"id":"1132"}]},"id":"1143","type":"LegendItem"},{"attributes":{"fill_color":{"value":"#aa69f7"},"line_color":{"value":"#aa69f7"},"top":{"field":"height"},"width":{"value":0.125},"x":{"field":"x"}},"id":"1136","type":"VBar"},{"attributes":{"data":{"density":["34.4%","15.4%","15.4%","35.9%","17.0%","17.0%","17.9%","21.2%","21.2%","30.7%","24.2%","24.2%","21.6%","24.3%","24.3%","18.7%","25.3%","25.3%","20.5%","27.6%","27.6%","38.3%","27.9%","27.9%","39.3%","27.8%","27.8%","31.0%","29.4%","29.4%","39.5%","23.7%","23.7%","48.8%","26.3%","26.3%","47.3%","23.7%","23.7%","51.8%","28.5%","28.5%","57.6%","23.1%","23.1%","56.9%","22.3%","22.3%","68.9%","23.7%","23.7%","56.2%","21.7%","21.7%","57.2%","15.0%","15.0%","41.1%","9.3%","9.3%","26.7%","6.1%","6.1%","10.6%","3.1%","3.1%","11.4%","1.8%","1.8%","9.6%","3.4%","3.4%"],"height":[0.360448,0.647168,0.647168,0.376832,0.714752,0.714752,0.187392,0.887808,0.887808,0.321536,1.01376,1.01376,0.226304,1.017856,1.017856,0.195584,1.061888,1.061888,0.21504,1.156096,1.156096,0.401408,1.169408,1.169408,0.411648,1.164288,1.164288,0.324608,1.231872,1.231872,0.413696,0.995328,0.995328,0.512,1.103872,1.103872,0.495616,0.994304,0.994304,0.54272,1.196032,1.196032,0.60416,0.970752,0.970752,0.596992,0.93696,0.93696,0.722944,0.992256,0.992256,0.5888,0.910336,0.910336,0.600064,0.62976,0.62976,0.431104,0.388096,0.388096,0.279552,0.253952,0.253952,0.111616,0.130048,0.130048,0.119808,0.074752,0.074752,0.100352,0.142336,0.142336],"img_height":["128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px"],"img_width":["128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px","128px","128px","512px"],"name":["0.attention.output","0.intermediate","0.output","1.attention.output","1.intermediate","1.output","2.attention.output","2.intermediate","2.output","3.attention.output","3.intermediate","3.output","4.attention.output","4.intermediate","4.output","5.attention.output","5.intermediate","5.output","6.attention.output","6.intermediate","6.output","7.attention.output","7.intermediate","7.output","8.attention.output","8.intermediate","8.output","9.attention.output","9.intermediate","9.output","10.attention.output","10.intermediate","10.output","11.attention.output","11.intermediate","11.output","12.attention.output","12.intermediate","12.output","13.attention.output","13.intermediate","13.output","14.attention.output","14.intermediate","14.output","15.attention.output","15.intermediate","15.output","16.attention.output","16.intermediate","16.output","17.attention.output","17.intermediate","17.output","18.attention.output","18.intermediate","18.output","19.attention.output","19.intermediate","19.output","20.attention.output","20.intermediate","20.output","21.attention.output","21.intermediate","21.output","22.attention.output","22.intermediate","22.output","23.attention.output","23.intermediate","23.output"],"parameters":["0.36","0.65","0.65","0.38","0.71","0.71","0.19","0.89","0.89","0.32","1.01","1.01","0.23","1.02","1.02","0.20","1.06","1.06","0.22","1.16","1.16","0.40","1.17","1.17","0.41","1.16","1.16","0.32","1.23","1.23","0.41","1.00","1.00","0.51","1.10","1.10","0.50","0.99","0.99","0.54","1.20","1.20","0.60","0.97","0.97","0.60","0.94","0.94","0.72","0.99","0.99","0.59","0.91","0.91","0.60","0.63","0.63","0.43","0.39","0.39","0.28","0.25","0.25","0.11","0.13","0.13","0.12","0.07","0.07","0.10","0.14","0.14"],"url":["/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_0_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_0_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_0_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_1_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_1_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_1_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_2_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_2_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_2_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_3_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_3_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_3_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_4_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_4_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_4_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_5_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_5_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_5_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_6_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_6_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_6_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_7_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_7_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_7_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_8_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_8_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_8_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_9_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_9_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_9_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_10_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_10_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_10_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_11_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_11_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_11_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_12_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_12_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_12_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_13_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_13_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_13_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_14_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_14_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_14_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_15_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_15_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_15_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_16_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_16_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_16_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_17_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_17_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_17_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_18_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_18_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_18_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_19_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_19_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_19_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_20_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_20_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_20_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_21_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_21_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_21_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_22_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_22_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_22_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_23_attention_output_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_23_intermediate_dense.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_23_output_dense.png"],"x":[0.5833333333333334,0.75,0.9166666666666667,1.5833333333333333,1.75,1.9166666666666665,2.5833333333333335,2.75,2.916666666666667,3.5833333333333335,3.75,3.916666666666667,4.583333333333333,4.75,4.916666666666666,5.583333333333333,5.75,5.916666666666666,6.583333333333333,6.75,6.916666666666666,7.583333333333333,7.75,7.916666666666666,8.583333333333334,8.75,8.916666666666668,9.583333333333334,9.75,9.916666666666668,10.583333333333334,10.75,10.916666666666668,11.583333333333334,11.75,11.916666666666668,12.583333333333334,12.75,12.916666666666668,13.583333333333334,13.75,13.916666666666668,14.583333333333334,14.75,14.916666666666668,15.583333333333334,15.75,15.916666666666668,16.583333333333332,16.75,16.916666666666664,17.583333333333332,17.75,17.916666666666664,18.583333333333332,18.75,18.916666666666664,19.583333333333332,19.75,19.916666666666664,20.583333333333332,20.75,20.916666666666664,21.583333333333332,21.75,21.916666666666664,22.583333333333332,22.75,22.916666666666664,23.583333333333332,23.75,23.916666666666664]},"selected":{"id":"1157"},"selection_policy":{"id":"1156"}},"id":"1134","type":"ColumnDataSource"},{"attributes":{"fill_alpha":{"value":0.1},"fill_color":{"value":"#aa69f7"},"line_alpha":{"value":0.1},"line_color":{"value":"#aa69f7"},"top":{"field":"height"},"width":{"value":0.125},"x":{"field":"x"}},"id":"1137","type":"VBar"},{"attributes":{"axis_label":"Layer","formatter":{"id":"1148"},"minor_tick_line_color":null,"ticker":{"id":"1107"}},"id":"1106","type":"LinearAxis"},{"attributes":{},"id":"1107","type":"BasicTicker"},{"attributes":{"data_source":{"id":"1116"},"glyph":{"id":"1118"},"hover_glyph":null,"muted_glyph":null,"name":"query","nonselection_glyph":{"id":"1119"},"selection_glyph":null,"view":{"id":"1121"}},"id":"1120","type":"GlyphRenderer"},{"attributes":{},"id":"1151","type":"Selection"},{"attributes":{"start":0},"id":"1100","type":"DataRange1d"},{"attributes":{"label":{"value":"fully connected"},"renderers":[{"id":"1138"}]},"id":"1144","type":"LegendItem"},{"attributes":{},"id":"1104","type":"LinearScale"},{"attributes":{"data":{"density":["31.8%","34.0%","16.4%","26.9%","18.8%","17.6%","19.4%","35.4%","37.8%","28.7%","37.6%","44.5%","44.5%","50.7%","54.0%","54.1%","68.5%","54.7%","57.3%","43.8%","27.6%","12.1%","13.0%","11.2%"],"height":[0.333824,0.356352,0.172032,0.2816,0.196608,0.18432,0.203776,0.371712,0.396288,0.301056,0.39424,0.466944,0.466944,0.531456,0.566272,0.567296,0.717824,0.57344,0.601088,0.458752,0.289792,0.126976,0.136192,0.11776],"img_height":["128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px"],"img_width":["128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px","128px"],"name":["0.attention.value","1.attention.value","2.attention.value","3.attention.value","4.attention.value","5.attention.value","6.attention.value","7.attention.value","8.attention.value","9.attention.value","10.attention.value","11.attention.value","12.attention.value","13.attention.value","14.attention.value","15.attention.value","16.attention.value","17.attention.value","18.attention.value","19.attention.value","20.attention.value","21.attention.value","22.attention.value","23.attention.value"],"parameters":["0.33","0.36","0.17","0.28","0.20","0.18","0.20","0.37","0.40","0.30","0.39","0.47","0.47","0.53","0.57","0.57","0.72","0.57","0.60","0.46","0.29","0.13","0.14","0.12"],"url":["/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_0_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_1_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_2_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_3_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_4_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_5_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_6_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_7_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_8_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_9_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_10_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_11_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_12_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_13_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_14_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_15_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_16_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_17_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_18_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_19_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_20_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_21_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_22_attention_self_value.png","/madlag/bert-large-uncased-wwm-squadv2-x2.15-f83.2-d25-hybrid-v1/raw/main/model_card/images/layer_23_attention_self_value.png"],"x":[0.41666666666666663,1.4166666666666665,2.416666666666667,3.416666666666667,4.416666666666666,5.416666666666666,6.416666666666666,7.416666666666666,8.416666666666668,9.416666666666668,10.416666666666668,11.416666666666668,12.416666666666668,13.416666666666668,14.416666666666668,15.416666666666668,16.416666666666664,17.416666666666664,18.416666666666664,19.416666666666664,20.416666666666664,21.416666666666664,22.416666666666664,23.416666666666664]},"selected":{"id":"1155"},"selection_policy":{"id":"1154"}},"id":"1128","type":"ColumnDataSource"},{"attributes":{"axis":{"id":"1110"},"dimension":1,"ticker":null},"id":"1113","type":"Grid"},{"attributes":{"label":{"value":"key"},"renderers":[{"id":"1126"}]},"id":"1142","type":"LegendItem"}],"root_ids":["1095"]},"title":"Bokeh Application","version":"2.2.3"}}';
|
119 |
+
var render_items = [{"docid":"244ac3f3-9c39-451a-b6fd-a9168f07e592","root_ids":["1095"],"roots":{"1095":"3da5dac6-12de-4334-845b-7925fac4bff8"}}];
|
120 |
+
root.Bokeh.embed.embed_items(docs_json, render_items);
|
121 |
+
|
122 |
+
}
|
123 |
+
if (root.Bokeh !== undefined) {
|
124 |
+
embed_document(root);
|
125 |
+
} else {
|
126 |
+
var attempts = 0;
|
127 |
+
var timer = setInterval(function(root) {
|
128 |
+
if (root.Bokeh !== undefined) {
|
129 |
+
clearInterval(timer);
|
130 |
+
embed_document(root);
|
131 |
+
} else {
|
132 |
+
attempts++;
|
133 |
+
if (attempts > 100) {
|
134 |
+
clearInterval(timer);
|
135 |
+
console.log("Bokeh: ERROR: Unable to run BokehJS code because BokehJS library is missing");
|
136 |
+
}
|
137 |
+
}
|
138 |
+
}, 10, root)
|
139 |
+
}
|
140 |
+
})(window);
|
141 |
+
});
|
142 |
+
};
|
143 |
+
if (document.readyState != "loading") fn();
|
144 |
+
else document.addEventListener("DOMContentLoaded", fn);
|
145 |
+
})();
|
146 |
+
},
|
147 |
+
function(Bokeh) {
|
148 |
+
|
149 |
+
|
150 |
+
}
|
151 |
+
];
|
152 |
+
|
153 |
+
function run_inline_js() {
|
154 |
+
|
155 |
+
for (var i = 0; i < inline_js.length; i++) {
|
156 |
+
inline_js[i].call(root, root.Bokeh);
|
157 |
+
}
|
158 |
+
|
159 |
+
}
|
160 |
+
|
161 |
+
if (root._bokeh_is_loading === 0) {
|
162 |
+
console.debug("Bokeh: BokehJS loaded, going straight to plotting");
|
163 |
+
run_inline_js();
|
164 |
+
} else {
|
165 |
+
load_libs(css_urls, js_urls, function() {
|
166 |
+
console.debug("Bokeh: BokehJS plotting callback run at", now());
|
167 |
+
run_inline_js();
|
168 |
+
});
|
169 |
+
}
|
170 |
+
}(window));
|
171 |
+
};
|
172 |
+
if (document.readyState != "loading") fn();
|
173 |
+
else document.addEventListener("DOMContentLoaded", fn);
|
174 |
+
})();
|
model_card/images/layer_0_attention_output_dense.png
ADDED
model_card/images/layer_0_attention_self_key.png
ADDED
model_card/images/layer_0_attention_self_query.png
ADDED
model_card/images/layer_0_attention_self_value.png
ADDED
model_card/images/layer_0_intermediate_dense.png
ADDED
model_card/images/layer_0_output_dense.png
ADDED
model_card/images/layer_10_attention_output_dense.png
ADDED
model_card/images/layer_10_attention_self_key.png
ADDED
model_card/images/layer_10_attention_self_query.png
ADDED
model_card/images/layer_10_attention_self_value.png
ADDED
model_card/images/layer_10_intermediate_dense.png
ADDED
model_card/images/layer_10_output_dense.png
ADDED
model_card/images/layer_11_attention_output_dense.png
ADDED
model_card/images/layer_11_attention_self_key.png
ADDED
model_card/images/layer_11_attention_self_query.png
ADDED
model_card/images/layer_11_attention_self_value.png
ADDED
model_card/images/layer_11_intermediate_dense.png
ADDED
model_card/images/layer_11_output_dense.png
ADDED
model_card/images/layer_12_attention_output_dense.png
ADDED
model_card/images/layer_12_attention_self_key.png
ADDED
model_card/images/layer_12_attention_self_query.png
ADDED
model_card/images/layer_12_attention_self_value.png
ADDED
model_card/images/layer_12_intermediate_dense.png
ADDED
model_card/images/layer_12_output_dense.png
ADDED
model_card/images/layer_13_attention_output_dense.png
ADDED
model_card/images/layer_13_attention_self_key.png
ADDED
model_card/images/layer_13_attention_self_query.png
ADDED
model_card/images/layer_13_attention_self_value.png
ADDED
model_card/images/layer_13_intermediate_dense.png
ADDED
model_card/images/layer_13_output_dense.png
ADDED
model_card/images/layer_14_attention_output_dense.png
ADDED
model_card/images/layer_14_attention_self_key.png
ADDED
model_card/images/layer_14_attention_self_query.png
ADDED
model_card/images/layer_14_attention_self_value.png
ADDED
model_card/images/layer_14_intermediate_dense.png
ADDED
model_card/images/layer_14_output_dense.png
ADDED
model_card/images/layer_15_attention_output_dense.png
ADDED
model_card/images/layer_15_attention_self_key.png
ADDED
model_card/images/layer_15_attention_self_query.png
ADDED
model_card/images/layer_15_attention_self_value.png
ADDED
model_card/images/layer_15_intermediate_dense.png
ADDED
model_card/images/layer_15_output_dense.png
ADDED
model_card/images/layer_16_attention_output_dense.png
ADDED
model_card/images/layer_16_attention_self_key.png
ADDED
model_card/images/layer_16_attention_self_query.png
ADDED
model_card/images/layer_16_attention_self_value.png
ADDED
model_card/images/layer_16_intermediate_dense.png
ADDED