File size: 2,037 Bytes
35e87dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcfce72
35e87dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2068eeb
 
35e87dd
2068eeb
 
35e87dd
 
 
2068eeb
35e87dd
 
 
 
5f0a0c4
 
2068eeb
31e99a6
39ddbca
 
35e87dd
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: wav2vec2_capstone
  results: []
datasets:
- mozilla-foundation/common_voice_16_1
language:
- en
- ca
- rw
- be
- eo
- de
- fr
- ka
- es
- lg
- sw
- fa
- it
- mh
- zh
- ba
- ta
- ru
- eu
- th
- pt
- pl
- ja
pipeline_tag: audio-classification
---

# WAV2VEC2_CAPSTONE_MODEL

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on a subset of the common_voice_16_1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3952
- Accuracy: 0.9098
- F1 score: 0.9097
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 10
- total_train_batch_size: 80
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
| 0.9339        | 1.0   | 776  | 1.4214          | 0.7162   | 0.7094   |
| 0.5663        | 2.0   | 1552 | 1.0182          | 0.8318   | 0.8277   |
| 0.4408        | 3.0   | 2328 | 0.6117          | 0.8795   | 0.8784   |
| 0.3521        | 4.0   | 3105 | 0.5092          | 0.8998   | 0.9001   |
| 0.2305        | 5.0   | 3881 | 0.3896          | 0.9004   | 0.9013   |
| 0.1219        | 6.0   | 4657 | 0.3096          | 0.9196   | 0.9194   |
| 0.0672        | 6.99  | 3591 | 0.3952          | 0.9098   | 0.9097   |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0