Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/wav2vec2-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- f1
|
9 |
+
model-index:
|
10 |
+
- name: wav2vec2_capstone
|
11 |
+
results: []
|
12 |
+
datasets:
|
13 |
+
- mozilla-foundation/common_voice_16_1
|
14 |
+
language:
|
15 |
+
- en
|
16 |
+
- ca
|
17 |
+
- rw
|
18 |
+
- be
|
19 |
+
- eo
|
20 |
+
- de
|
21 |
+
- fr
|
22 |
+
- ka
|
23 |
+
- es
|
24 |
+
- lg
|
25 |
+
- sw
|
26 |
+
- fa
|
27 |
+
- it
|
28 |
+
- mh
|
29 |
+
- zh
|
30 |
+
- ba
|
31 |
+
- ta
|
32 |
+
- ru
|
33 |
+
- eu
|
34 |
+
- th
|
35 |
+
- pt
|
36 |
+
- pl
|
37 |
+
- ja
|
38 |
+
pipeline_tag: audio-classification
|
39 |
+
---
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# WAV2VEC2_CAPSTONE_MODEL2
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on a subset of the common_voice_16_1 dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.3952
|
48 |
+
- Accuracy: 0.9098
|
49 |
+
- F1 score: 0.9097
|
50 |
+
## Model description
|
51 |
+
More information needed
|
52 |
+
## Intended uses & limitations
|
53 |
+
More information needed
|
54 |
+
## Training and evaluation data
|
55 |
+
More information needed
|
56 |
+
## Training procedure
|
57 |
+
### Training hyperparameters
|
58 |
+
The following hyperparameters were used during training:
|
59 |
+
- learning_rate: 0.0003
|
60 |
+
- train_batch_size: 7
|
61 |
+
- eval_batch_size: 7
|
62 |
+
- seed: 42
|
63 |
+
- gradient_accumulation_steps: 11
|
64 |
+
- total_train_batch_size: 77
|
65 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
66 |
+
- lr_scheduler_type: linear
|
67 |
+
- lr_scheduler_warmup_ratio: 0.1
|
68 |
+
- num_epochs: 7
|
69 |
+
- mixed_precision_training: Native AMP
|
70 |
+
### Training results
|
71 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 score |
|
72 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
|
73 |
+
| 1.5222 | 1.0 | 513 | 1.4214 | 0.5477 | 0.5374 |
|
74 |
+
| 0.9554 | 2.0 | 1027 | 1.0182 | 0.6892 | 0.6826 |
|
75 |
+
| 0.6128 | 3.0 | 1541 | 0.6117 | 0.8205 | 0.8203 |
|
76 |
+
| 0.4882 | 4.0 | 2055 | 0.5092 | 0.8474 | 0.8478 |
|
77 |
+
| 0.2305 | 5.0 | 2569 | 0.5244 | 0.8643 | 0.8639 |
|
78 |
+
| 0.1219 | 6.0 | 3082 | 0.4169 | 0.8966 | 0.8966 |
|
79 |
+
| 0.0672 | 6.99 | 3591 | 0.3952 | 0.9098 | 0.9097 |
|
80 |
+
### Framework versions
|
81 |
+
- Transformers 4.36.2
|
82 |
+
- Pytorch 2.1.2+cu121
|
83 |
+
- Datasets 2.16.0
|
84 |
+
- Tokenizers 0.15.0
|