mageec commited on
Commit
35e87dd
·
verified ·
1 Parent(s): f4d6652

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/wav2vec2-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ model-index:
10
+ - name: wav2vec2_capstone
11
+ results: []
12
+ datasets:
13
+ - mozilla-foundation/common_voice_16_1
14
+ language:
15
+ - en
16
+ - ca
17
+ - rw
18
+ - be
19
+ - eo
20
+ - de
21
+ - fr
22
+ - ka
23
+ - es
24
+ - lg
25
+ - sw
26
+ - fa
27
+ - it
28
+ - mh
29
+ - zh
30
+ - ba
31
+ - ta
32
+ - ru
33
+ - eu
34
+ - th
35
+ - pt
36
+ - pl
37
+ - ja
38
+ pipeline_tag: audio-classification
39
+ ---
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # WAV2VEC2_CAPSTONE_MODEL2
44
+
45
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on a subset of the common_voice_16_1 dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.3952
48
+ - Accuracy: 0.9098
49
+ - F1 score: 0.9097
50
+ ## Model description
51
+ More information needed
52
+ ## Intended uses & limitations
53
+ More information needed
54
+ ## Training and evaluation data
55
+ More information needed
56
+ ## Training procedure
57
+ ### Training hyperparameters
58
+ The following hyperparameters were used during training:
59
+ - learning_rate: 0.0003
60
+ - train_batch_size: 7
61
+ - eval_batch_size: 7
62
+ - seed: 42
63
+ - gradient_accumulation_steps: 11
64
+ - total_train_batch_size: 77
65
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
+ - lr_scheduler_type: linear
67
+ - lr_scheduler_warmup_ratio: 0.1
68
+ - num_epochs: 7
69
+ - mixed_precision_training: Native AMP
70
+ ### Training results
71
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 score |
72
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
73
+ | 1.5222 | 1.0 | 513 | 1.4214 | 0.5477 | 0.5374 |
74
+ | 0.9554 | 2.0 | 1027 | 1.0182 | 0.6892 | 0.6826 |
75
+ | 0.6128 | 3.0 | 1541 | 0.6117 | 0.8205 | 0.8203 |
76
+ | 0.4882 | 4.0 | 2055 | 0.5092 | 0.8474 | 0.8478 |
77
+ | 0.2305 | 5.0 | 2569 | 0.5244 | 0.8643 | 0.8639 |
78
+ | 0.1219 | 6.0 | 3082 | 0.4169 | 0.8966 | 0.8966 |
79
+ | 0.0672 | 6.99 | 3591 | 0.3952 | 0.9098 | 0.9097 |
80
+ ### Framework versions
81
+ - Transformers 4.36.2
82
+ - Pytorch 2.1.2+cu121
83
+ - Datasets 2.16.0
84
+ - Tokenizers 0.15.0