File size: 19,800 Bytes
c7ccc16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import os
import subprocess
import time
import shutil
import re
import hashlib

#'''
fn_list = [
    'tf2_ssd_mobilenet_v2_coco17_ptq',
    'ssd_mobilenet_v2_coco_quant_postprocess',
    'ssdlite_mobiledet_coco_qat_postprocess',
    'ssd_mobilenet_v1_coco_quant_postprocess',
    'tf2_ssd_mobilenet_v1_fpn_640x640_coco17_ptq',
    'efficientdet_lite0_320_ptq',
    'efficientdet_lite1_384_ptq',
    'efficientdet_lite2_448_ptq',
    'efficientdet_lite3_512_ptq',
    'efficientdet_lite3x_640_ptq',
    'yolov5n-int8',
    'yolov5s-int8',
    'yolov5m-int8',
    'yolov5l-int8',

    ['yolov8n_416_640px', 'yolov8n_384_640px', 'yolov8n_384_608px', 'yolov8n_352_608px'],
    ['yolov8s_416_640px', 'yolov8s_384_640px', 'yolov8s_384_608px', 'yolov8s_352_608px'],
    ['yolov8m_416_640px', 'yolov8m_384_640px', 'yolov8m_384_608px', 'yolov8m_352_608px'],
    ['yolov8l_416_640px', 'yolov8l_384_640px', 'yolov8l_384_608px', 'yolov8l_352_608px'],

    ['yolov9t_416_640px', 'yolov9t_384_640px', 'yolov9t_384_608px', 'yolov9t_352_608px', 'yolov9t_352_576px'],
    ['yolov9s_416_640px', 'yolov9s_384_640px', 'yolov9s_384_608px', 'yolov9s_352_608px', 'yolov9s_352_576px'],
    ['yolov9m_416_640px', 'yolov9m_384_640px', 'yolov9m_384_608px', 'yolov9m_352_608px', 'yolov9m_352_576px'],
    ['yolov9c_416_640px', 'yolov9c_384_640px', 'yolov9c_384_608px', 'yolov9c_352_608px', 'yolov9c_352_576px'],

    'ipcam-general-v8'
    ]

custom_args = {
    'tf2_ssd_mobilenet_v2_coco17_ptq': {
        2: ["--diff_threshold_ns","100000"]},
    'ssd_mobilenet_v2_coco_quant_postprocess': {
        5: ["--undefok=enable_multiple_subgraphs","--enable_multiple_subgraphs","--partition_search_step","3"]},
    'ssdlite_mobiledet_coco_qat_postprocess': {
        2: ["--diff_threshold_ns","100000"]},
    'efficientdet_lite3_512_ptq': {
        2: ["--undefok=enable_multiple_subgraphs","--enable_multiple_subgraphs"],
        3: ["--undefok=enable_multiple_subgraphs","--enable_multiple_subgraphs"],
        4: ["--undefok=enable_multiple_subgraphs","--enable_multiple_subgraphs"],
        5: ["--undefok=enable_multiple_subgraphs","--enable_multiple_subgraphs"],
        6: ["--undefok=enable_multiple_subgraphs","--enable_multiple_subgraphs"],
        7: ["--undefok=enable_multiple_subgraphs","--enable_multiple_subgraphs"]},
    'efficientdet_lite3x_640_ptq': {
        5: ["--undefok=enable_multiple_subgraphs","--enable_multiple_subgraphs","--partition_search_step","2"],
        6: ["--undefok=enable_multiple_subgraphs","--enable_multiple_subgraphs","--partition_search_step","3"]},
    'yolov5n-int8': {
        5: ["--partition_search_step","2"],
        6: ["--partition_search_step","2"],
        7: ["--partition_search_step","2"],
        8: ["--partition_search_step","2"]},
    'yolov5s-int8': {
        5: ["--partition_search_step","2"],
        6: ["--partition_search_step","2"],
        7: ["--partition_search_step","2"],
        8: ["--partition_search_step","2"]},
    'yolov5m-int8': {
        5: ["--partition_search_step","2"],
        6: ["--partition_search_step","2"],
        7: ["--partition_search_step","2"],
        8: ["--partition_search_step","2"]},
    'yolov5l-int8': {
        5: ["--undefok=enable_multiple_subgraphs","--enable_multiple_subgraphs","--partition_search_step","2"],
        6: ["--partition_search_step","2"],
        7: ["--partition_search_step","2"],
        8: ["--partition_search_step","2"]},
    'yolov8m_416_640px': {
        5: ["--partition_search_step","2"],
        6: ["--partition_search_step","3"],
        7: ["--partition_search_step","4"],
        8: ["--partition_search_step","5"]},
    'yolov8l_416_640px': {
        4: ["--partition_search_step","2"],
        5: ["--partition_search_step","2"],
        6: ["--partition_search_step","3"],
        7: ["--partition_search_step","4"],
        8: ["--partition_search_step","5"]},
    'yolov9c_416_640px': {
        2: ["--delegate_search_step","10"]},
    'yolov9c_384_640px': {
        1: ["--delegate_search_step","10"],
        2: ["--delegate_search_step","10"]},
    'yolov9c_384_608px': {
        1: ["--delegate_search_step","10"],
        2: ["--delegate_search_step","10"]},
    'yolov9c_352_608px': {
        1: ["--delegate_search_step","10"],
        2: ["--delegate_search_step","10"]},
    'yolov9c_352_576px': {
        1: ["--delegate_search_step","10"],
        2: ["--delegate_search_step","10"]}}#'''

'''
fn_list = [
#    'yolov5n-int8',
#    'yolov5s-int8',
#    'yolov5m-int8',
#    'yolov5l-int8',
#    'yolov8n_full_integer_quant',
#    'yolov8s_full_integer_quant',
#    'yolov8m_full_integer_quant',
#    'yolov8l_full_integer_quant',
#    'yolov8n_480px',
#    'yolov8s_480px',
#    'yolov8m_480px',
#    'yolov8l_480px',
#    'yolov8n_512px',
#    'yolov8s_512px',
#    'yolov8m_512px',
#    'yolov8l_512px',
#    'yolov8s_544px',
#    'yolov8m_544px', # lg 1st seg
#    'yolov8l_544px', # lg 1st seg
#    'yolov8s_576px',
#    'yolov8m_576px', # lg 1st seg
#    'yolov8l_576px', # lg 1st seg
#    'yolov8s_608px',
#    'yolov8m_608px', # lg 1st seg
#    'yolov8l_608px',
#    'yolov8n_640px',
#    'yolov8s_640px',
#    'yolov8m_640px', # lg 1st seg
#    'yolov8l_640px', # lg 1st seg
#    'yolov8n_416_640px', # lg 1st seg
    'yolov8s_416_640px', # lg 1st seg
    'yolov8m_416_640px', # lg 1st seg
    'yolov8l_416_640px'] # lg 1st seg
#    'ipcam-general-v8'] #'''
   
'''
custom_args = {
    'yolov8n_full_integer_quant': {
        2: ["--diff_threshold_ns","100000"],
        3: ["--diff_threshold_ns","200000"]},
    'yolov8s_full_integer_quant': {
        2: ["--diff_threshold_ns","200000"]},
    'yolov8l_full_integer_quant': {
        5: ["--partition_search_step","2"]},
    'yolov8n_480px': {
        2: ["--diff_threshold_ns","100000"],
        3: ["--diff_threshold_ns","200000"]},
    'yolov8s_480px': {
        2: ["--diff_threshold_ns","200000"]},
    'yolov8m_480px': {
        5: ["--partition_search_step","2"]},
    'yolov8n_512px': {
        2: ["--diff_threshold_ns","1200000"],
        3: ["--diff_threshold_ns","600000"]},
    'yolov8s_512px': {
        2: ["--diff_threshold_ns","200000"]},
    'yolov8m_640px': {
        2: ["--diff_threshold_ns","200000", "--undefok=timeout_sec","--timeout_sec=360"]},
    'yolov8l_640px': {
        2: ["--undefok=timeout_sec","--timeout_sec=360"]},
    'yolov8n_416_640px': {
        5: ["--partition_search_step","2"]},
    'yolov8s_416_640px': {
        5: ["--partition_search_step","2"]},
    'yolov8m_416_640px': {
        5: ["--initial_lower_bound_ns","44658311","--initial_upper_bound_ns","45466138","--partition_search_step","2"],
        6: ["--initial_lower_bound_ns","39444004","--initial_upper_bound_ns","40071927","--partition_search_step","3"],
        7: ["--initial_lower_bound_ns","36028652","--initial_upper_bound_ns","37012866","--partition_search_step","4"],
        8: ["--initial_lower_bound_ns","33892323","--initial_upper_bound_ns","34856571","--partition_search_step","5"]},
    'yolov8l_416_640px': {
        5: ["--initial_lower_bound_ns","82297482","--initial_upper_bound_ns","82892528","--partition_search_step","2"],
        6: ["--initial_lower_bound_ns","69966647","--initial_upper_bound_ns","70757195","--partition_search_step","3"],
        7: ["--initial_lower_bound_ns","69067450","--initial_upper_bound_ns","69599451","--partition_search_step","4"],
        8: ["--initial_lower_bound_ns","55889854","--initial_upper_bound_ns","56444625","--partition_search_step","5"]}}#'''

'''
diff_threshold_ns = {
    'yolov8s_416_640px': {
        2: 4000000},
    'yolov8m_416_640px': {
        4: 40000000,
        5: 30000000},
    'yolov8l_416_640px': {
        7: 90000000,
        8: 70000000}}#'''

'''
custom_args = {
    'yolov8m_416_640px': {
        5: ["--partition_search_step","2"],
        6: ["--partition_search_step","3"],
        7: ["--partition_search_step","4"],
        8: ["--partition_search_step","5"]},
    'yolov8l_416_640px': {
        4: ["--partition_search_step","2"],
        5: ["--partition_search_step","2"],
        6: ["--partition_search_step","3"],
        7: ["--partition_search_step","4"],
        8: ["--partition_search_step","5"]}}#'''
   
seg_dir = "/home/seth/Documents/all_segments/"
seg_types = ['', '2x_first_seg/', '15x_first_seg/', '3x_first_seg/', '4x_first_seg/', '15x_last_seg/', '2x_last_seg/', 'dumb/']


def seg_exists(filename, segment_type, segment_count):
    if segment_type == 'orig_code':
        segment_type = ''

    if segment_count == 1:
        seg_list = [seg_dir+segment_type+filename+'_edgetpu.tflite']
    else:
        seg_list = [seg_dir+segment_type+filename+'_segment_{}_of_{}_edgetpu.tflite'.format(i, segment_count) for i in range(segment_count)]
    return (seg_list, any([True for s in seg_list if not os.path.exists(s)]))

MAX_TPU_COUNT = 5

'''
# Generate segment files
for sn in range(1,MAX_TPU_COUNT+1):
    flat_fn_list = []
    for fn in fn_list:
        if isinstance(fn, list):
            flat_fn_list += fn
        else:
            flat_fn_list.append(fn)


    for fn in flat_fn_list:
        for seg_type in seg_types:
            seg_list, file_missing = seg_exists(fn, seg_type, sn)

            if not file_missing:
                continue
               
            if sn == 1:
                cmd = ["/usr/bin/edgetpu_compiler","-s","-d","--out_dir",seg_dir+seg_type,seg_dir+fn+".tflite"]
            elif 'dumb' in seg_type:
                cmd = ["/usr/bin/edgetpu_compiler","-s","-d","-n",str(sn),"--out_dir",seg_dir+seg_type,seg_dir+fn+".tflite"]
            elif 'saturated' in seg_type:
                try:
                    cmd = ["libcoral/out/k8/tools/partitioner/partition_with_profiling","--output_dir",seg_dir+seg_type,"--edgetpu_compiler_binary",
                           "/usr/bin/edgetpu_compiler","--model_path",seg_dir+fn+".tflite","--num_segments",str(sn),
                           "--diff_threshold_ns", str(diff_threshold_ns[fn][sn])]
                except:
                    # Note: "Saturated segments" is an attempt to load as much of the model as possible onto segments
                    # while ignoring the latency incurred by slower segments. We assume we'll be able to "speed up"
                    # these slower segments simply by running more copies of them. The faster segments ideally will
                    # be optimized to all run at roughly the same speed. Thus the overall inference throughput will
                    # be limited by how many multiples of the slowest segment we can run.
                    #
                    # diff_threshold_ns key entries only exist where we want to create "saturated segments". More would
                    # mean the model is too sparse across segments. We create saturated segments by adjusting the
                    # diff_threshold_ns until the compiler just starts pushing parameters off of the TPUs. Ideally
                    # this will result in one or two slow segments and the rest of the segments are roughly equally
                    # fast.
                    continue

            else:
                if '2x_first_seg' in seg_type:
                    #+++ b/coral/tools/partitioner/profiling_based_partitioner.cc
                    #@@ -190,6 +190,8 @@ int64_t ProfilingBasedPartitioner::PartitionCompileAndAnalyze(
                    #     latencies = std::get<2>(coral::BenchmarkPartitionedModel(
                    #         tmp_edgetpu_segment_paths, &edgetpu_contexts(), kNumInferences));
                    #+    latencies[0] /= 2;
                    #     if (kUseCache) {
                    #       for (int i = 0; i < num_segments_; ++i) {
                    #         segment_latency_cache_[{segment_starts[i], num_ops[i]}] = latencies[i];
                    #@@ -211,10 +213,11 @@ std::pair<int64_t, int64_t> ProfilingBasedPartitioner::GetBounds(
                    #                      num_segments_, /*search_delegate=*/true,
                    #                      delegate_search_step))
                    #       << "Can not compile initial partition.";
                    #-  const auto latencies = std::get<2>(coral::BenchmarkPartitionedModel(
                    #+  auto latencies = std::get<2>(coral::BenchmarkPartitionedModel(
                    #       tmp_edgetpu_segment_paths, &edgetpu_contexts(), kNumInferences));
                    # 
                    #   DeleteFolder(tmp_dir);
                    #+  latencies[0] /= 4;
                    # 
                    #   int64_t lower_bound = std::numeric_limits<int64_t>::max(), upper_bound = 0;
                    #   for (auto latency : latencies) {
                    #
                    # sudo make DOCKER_IMAGE="ubuntu:20.04" DOCKER_CPUS="k8" DOCKER_TARGETS="tools" docker-build

                    #// Encourage each segment slower than the previous to spread out the bottlenecks
                    #double latency_adjust = 1.0;
                    #for (int i = 1; i < num_segments_; ++i)
                    #{
                    #  if (latencies[i-1] < latencies[i])
                    #    latency_adjust *= 0.97;
                    #  latencies[i-1] *= latency_adjust;
                    #}
                    #latencies[num_segments_-1] *= latency_adjust;
                    
                    partition_with_profiling_dir = "libcoral/tools.2"
                elif '15x_first_seg' in seg_type:
                    partition_with_profiling_dir = "libcoral/tools.15"
                elif '133x_first_seg' in seg_type:
                    partition_with_profiling_dir = "libcoral/tools.133"
                elif '166x_first_seg' in seg_type:
                    partition_with_profiling_dir = "libcoral/tools.166"
                elif '3x_first_seg' in seg_type:
                    partition_with_profiling_dir = "libcoral/tools.3"
                elif '4x_first_seg' in seg_type:
                    partition_with_profiling_dir = "libcoral/tools.4"
                elif '15x_last_seg' in seg_type:
                    partition_with_profiling_dir = "libcoral/tools.last15"
                elif '2x_last_seg' in seg_type:
                    partition_with_profiling_dir = "libcoral/tools.last2"
                elif '125x_last_inc_seg/' == seg_type:
                    partition_with_profiling_dir = "libcoral/tools.last125_inc_seg"
                elif '2x_first_125x_last_inc_seg/' == seg_type:
                    partition_with_profiling_dir = "libcoral/tools.2last125_inc_seg"
                elif 'inc_seg/' == seg_type:
                    partition_with_profiling_dir = "libcoral/tools.inc_seg"
                else:
                    partition_with_profiling_dir = "libcoral/tools.orig"

                cmd = [partition_with_profiling_dir+"/partitioner/partition_with_profiling","--output_dir",seg_dir+seg_type,"--edgetpu_compiler_binary",
                       "/usr/bin/edgetpu_compiler","--model_path",seg_dir+fn+".tflite","--num_segments",str(sn)]
       
            try:
                cmd += custom_args[fn][sn]
            except:
                pass
           
            print(cmd)
            subprocess.run(cmd)#'''
           

seg_types += ['133x_first_seg/', '166x_first_seg/', 'inc_seg/', '125x_last_inc_seg/', '2x_first_125x_last_inc_seg/']

# Test timings
fin_timings = {}
fin_fnames = {}
for fn in fn_list:
    if isinstance(fn, list):
        fn_size_list = fn
        fn = fn[0]
    else:
        fn_size_list = [fn]

    timings = []
    fin_timings[fn] = {}
    fin_fnames[fn] = {}

    for num_tpus in range(1,MAX_TPU_COUNT+1):

        for this_fn in fn_size_list:
            for seg_type in seg_types:
                max_seg = 0
                for sn in range(1,num_tpus+1):
                    # No need to run many slow single TPU tests, just one
                    if sn == 1 and seg_type != '':
                        continue

                    # Test against orig code
                    exe_file = "/home/seth/CodeProject.AI-ObjectDetectionCoral/objectdetection_coral_multitpu.py"

                    # Get file types
                    seg_list, file_missing = seg_exists(this_fn, seg_type, sn)

                    if file_missing:
                        continue
                    max_seg = sn

                    cmd = ["python3.9",exe_file,"--model"] + \
                          seg_list + ["--labels","coral/pycoral/test_data/coco_labels.txt","--input","/home/seth/coral/pycoral/test_data/grace_hopper.bmp",
                          "--count","4000","--num-tpus",str(num_tpus)]
                    print(cmd)

                    # Clock runtime
                    #start_time = time.perf_counter()
                    #subprocess.run(cmd)
                    #ms_time = 1000 * (time.perf_counter() - start_time) / 4000 # ms * total time / iterations

                    # Last quarter runtime
                    try:
                        c = subprocess.run(cmd, check=True, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, timeout=3600*2)
                    except subprocess.TimeoutExpired:
                        print("Timed out!")
                        continue
                    print(c.stdout)
                    print(c.stderr)
                    ms_time = float(re.compile(r'threads; ([\d\.]+)ms ea').findall(c.stderr)[0])
                    mpps_time = float(re.compile(r'; ([\d\.]+) tensor MPx').findall(c.stderr)[0])

                    timings.append((ms_time, num_tpus, this_fn, seg_type, sn, mpps_time))
                    subprocess.run(['uptime'])

        timings = sorted(timings, key=lambda t: t[5], reverse=True)
        if not any(timings):
            continue

        # Print the top ten
        print(f"TIMINGS FOR {num_tpus} TPUs AND {fn} MODEL:")
        for t in range(min(10,len(timings))):
            print(timings[t])

        # Get best segments, but
        # Skip if it's not 'orig_code' and > 1 segment
        t = [t for t in timings if t[3] != 'orig_code'][0]
        fin_timings[fn][num_tpus] = timings[0]

        # Add segment to the final list 
        # Copy best to local dir
        seg_list, _ = seg_exists(t[2], t[3], t[4])
        fin_fnames[fn][num_tpus] = []
        for s in seg_list:
            file_components = os.path.normpath(s).split("/")
            out_fname = file_components[-2]+"_"+file_components[-1]
            shutil.copyfile(s, out_fname)
            checksum = hashlib.md5(open(out_fname,'rb').read()).hexdigest()
            fin_fnames[fn][num_tpus].append((out_fname, checksum))

        # Create archive for this model / TPU count
        #if len(fin_fnames[fn][num_tpus]) > 1 or num_tpus == 1:
        #    zip_name = f'objectdetection-{fn}-{num_tpus}-edgetpu.zip'
        #    cmd = ['zip', '-9', zip_name] + fin_fnames[fn][num_tpus]
        #    print(cmd)
        #    if os.path.exists(zip_name):
        #        os.unlink(zip_name)
        #    subprocess.run(cmd)

print(fin_timings)
print(fin_fnames)
 
# Pretty print all of the segments we've timed and selected
for fn, v in fin_fnames.items():
    print("             '%s': {" % fn)
    for tpu_count, timing in fin_timings[fn].items():
        if tpu_count in v:
            seg_str = f"{len(v[tpu_count])} segments"
        else:
            seg_str = "1 segment "

        fps = 1000.0 / timing[0]

        print(f"#{timing[0]:6.1f} ms/inference ({fps:5.1f} FPS;{timing[5]:5.1f} tensor MPx/sec) for {tpu_count} TPUs using {seg_str}: {timing[2]}")

    for tpu_count, out_fnames in v.items():
        if len(out_fnames) > 1:
            print(f"{tpu_count}: "+str(out_fnames)+",")
    if 1 in v:
        print(f"             '_tflite': '{v[1][0]}'")
    print("             },")