manu
/

ColPali
Safetensors
English
vidore-experimental
manu commited on
Commit
f91c59c
·
verified ·
1 Parent(s): f5a67db

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: vidore/colqwen2-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "vidore/colqwen2-base",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": "gaussian",
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": "(.*(model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)",
23
+ "task_type": "FEATURE_EXTRACTION",
24
+ "use_dora": false,
25
+ "use_rslora": false
26
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b29d5197e8cf1c54c0e469699b7ea5bd52564c409784822055ec7eb552e283e8
3
+ size 74018232
added_tokens.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|box_end|>": 151649,
3
+ "<|box_start|>": 151648,
4
+ "<|endoftext|>": 151643,
5
+ "<|im_end|>": 151645,
6
+ "<|im_start|>": 151644,
7
+ "<|image_pad|>": 151655,
8
+ "<|object_ref_end|>": 151647,
9
+ "<|object_ref_start|>": 151646,
10
+ "<|quad_end|>": 151651,
11
+ "<|quad_start|>": 151650,
12
+ "<|video_pad|>": 151656,
13
+ "<|vision_end|>": 151653,
14
+ "<|vision_pad|>": 151654,
15
+ "<|vision_start|>": 151652
16
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
checkpoint-1847/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ./models/colqwen2_base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
checkpoint-1847/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./models/colqwen2_base",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": "gaussian",
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": "(.*(model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)",
23
+ "task_type": "FEATURE_EXTRACTION",
24
+ "use_dora": false,
25
+ "use_rslora": false
26
+ }
checkpoint-1847/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b29d5197e8cf1c54c0e469699b7ea5bd52564c409784822055ec7eb552e283e8
3
+ size 74018232
checkpoint-1847/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e61eec2b8e41842d7c4d4f43bd570aac1993d0f04c27ce28ff440d77ef159c05
3
+ size 148262384
checkpoint-1847/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f26235f3b8674882506cb0c3704899dcd91e2c52aa41804516417e5a3ed8be4
3
+ size 14244
checkpoint-1847/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fb92e886726d2ce367403fa76f57f31884a180be2f7a0a97379184614ececee
3
+ size 1064
checkpoint-1847/trainer_state.json ADDED
@@ -0,0 +1,1465 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 100,
6
+ "global_step": 1847,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.005414185165132647,
13
+ "grad_norm": 4.75,
14
+ "learning_rate": 2.0000000000000003e-06,
15
+ "loss": 0.8236,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.010828370330265295,
20
+ "grad_norm": 4.59375,
21
+ "learning_rate": 4.000000000000001e-06,
22
+ "loss": 0.8484,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.016242555495397944,
27
+ "grad_norm": 5.21875,
28
+ "learning_rate": 6e-06,
29
+ "loss": 0.8014,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.02165674066053059,
34
+ "grad_norm": 3.984375,
35
+ "learning_rate": 8.000000000000001e-06,
36
+ "loss": 0.779,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.02707092582566324,
41
+ "grad_norm": 2.875,
42
+ "learning_rate": 1e-05,
43
+ "loss": 0.7153,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.03248511099079589,
48
+ "grad_norm": 2.328125,
49
+ "learning_rate": 1.2e-05,
50
+ "loss": 0.6692,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.03789929615592853,
55
+ "grad_norm": 2.359375,
56
+ "learning_rate": 1.4000000000000001e-05,
57
+ "loss": 0.672,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.04331348132106118,
62
+ "grad_norm": 1.9765625,
63
+ "learning_rate": 1.6000000000000003e-05,
64
+ "loss": 0.6071,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.04872766648619383,
69
+ "grad_norm": 1.8046875,
70
+ "learning_rate": 1.8e-05,
71
+ "loss": 0.5757,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.05414185165132648,
76
+ "grad_norm": 1.6640625,
77
+ "learning_rate": 2e-05,
78
+ "loss": 0.5318,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.05414185165132648,
83
+ "eval_loss": 0.4426738917827606,
84
+ "eval_runtime": 58.7167,
85
+ "eval_samples_per_second": 8.515,
86
+ "eval_steps_per_second": 0.545,
87
+ "step": 100
88
+ },
89
+ {
90
+ "epoch": 0.05955603681645912,
91
+ "grad_norm": 3.078125,
92
+ "learning_rate": 2.2000000000000003e-05,
93
+ "loss": 0.5026,
94
+ "step": 110
95
+ },
96
+ {
97
+ "epoch": 0.06497022198159177,
98
+ "grad_norm": 3.234375,
99
+ "learning_rate": 2.4e-05,
100
+ "loss": 0.4925,
101
+ "step": 120
102
+ },
103
+ {
104
+ "epoch": 0.07038440714672442,
105
+ "grad_norm": 1.4296875,
106
+ "learning_rate": 2.6000000000000002e-05,
107
+ "loss": 0.4557,
108
+ "step": 130
109
+ },
110
+ {
111
+ "epoch": 0.07579859231185707,
112
+ "grad_norm": 1.2734375,
113
+ "learning_rate": 2.8000000000000003e-05,
114
+ "loss": 0.4558,
115
+ "step": 140
116
+ },
117
+ {
118
+ "epoch": 0.08121277747698971,
119
+ "grad_norm": 1.234375,
120
+ "learning_rate": 3e-05,
121
+ "loss": 0.426,
122
+ "step": 150
123
+ },
124
+ {
125
+ "epoch": 0.08662696264212236,
126
+ "grad_norm": 1.203125,
127
+ "learning_rate": 3.2000000000000005e-05,
128
+ "loss": 0.3799,
129
+ "step": 160
130
+ },
131
+ {
132
+ "epoch": 0.092041147807255,
133
+ "grad_norm": 1.3125,
134
+ "learning_rate": 3.4000000000000007e-05,
135
+ "loss": 0.3866,
136
+ "step": 170
137
+ },
138
+ {
139
+ "epoch": 0.09745533297238766,
140
+ "grad_norm": 1.078125,
141
+ "learning_rate": 3.6e-05,
142
+ "loss": 0.3668,
143
+ "step": 180
144
+ },
145
+ {
146
+ "epoch": 0.10286951813752031,
147
+ "grad_norm": 1.3359375,
148
+ "learning_rate": 3.8e-05,
149
+ "loss": 0.3396,
150
+ "step": 190
151
+ },
152
+ {
153
+ "epoch": 0.10828370330265295,
154
+ "grad_norm": 1.1015625,
155
+ "learning_rate": 4e-05,
156
+ "loss": 0.3133,
157
+ "step": 200
158
+ },
159
+ {
160
+ "epoch": 0.10828370330265295,
161
+ "eval_loss": 0.23219549655914307,
162
+ "eval_runtime": 60.3361,
163
+ "eval_samples_per_second": 8.287,
164
+ "eval_steps_per_second": 0.53,
165
+ "step": 200
166
+ },
167
+ {
168
+ "epoch": 0.1136978884677856,
169
+ "grad_norm": 1.0390625,
170
+ "learning_rate": 4.2e-05,
171
+ "loss": 0.2862,
172
+ "step": 210
173
+ },
174
+ {
175
+ "epoch": 0.11911207363291824,
176
+ "grad_norm": 1.1484375,
177
+ "learning_rate": 4.4000000000000006e-05,
178
+ "loss": 0.2726,
179
+ "step": 220
180
+ },
181
+ {
182
+ "epoch": 0.12452625879805089,
183
+ "grad_norm": 0.9765625,
184
+ "learning_rate": 4.600000000000001e-05,
185
+ "loss": 0.2823,
186
+ "step": 230
187
+ },
188
+ {
189
+ "epoch": 0.12994044396318355,
190
+ "grad_norm": 1.15625,
191
+ "learning_rate": 4.8e-05,
192
+ "loss": 0.2724,
193
+ "step": 240
194
+ },
195
+ {
196
+ "epoch": 0.1353546291283162,
197
+ "grad_norm": 1.359375,
198
+ "learning_rate": 5e-05,
199
+ "loss": 0.2563,
200
+ "step": 250
201
+ },
202
+ {
203
+ "epoch": 0.14076881429344884,
204
+ "grad_norm": 1.359375,
205
+ "learning_rate": 4.9686912961803384e-05,
206
+ "loss": 0.2243,
207
+ "step": 260
208
+ },
209
+ {
210
+ "epoch": 0.1461829994585815,
211
+ "grad_norm": 1.734375,
212
+ "learning_rate": 4.9373825923606765e-05,
213
+ "loss": 0.2297,
214
+ "step": 270
215
+ },
216
+ {
217
+ "epoch": 0.15159718462371413,
218
+ "grad_norm": 2.078125,
219
+ "learning_rate": 4.906073888541015e-05,
220
+ "loss": 0.207,
221
+ "step": 280
222
+ },
223
+ {
224
+ "epoch": 0.15701136978884678,
225
+ "grad_norm": 2.34375,
226
+ "learning_rate": 4.874765184721353e-05,
227
+ "loss": 0.2255,
228
+ "step": 290
229
+ },
230
+ {
231
+ "epoch": 0.16242555495397942,
232
+ "grad_norm": 1.1953125,
233
+ "learning_rate": 4.843456480901691e-05,
234
+ "loss": 0.1946,
235
+ "step": 300
236
+ },
237
+ {
238
+ "epoch": 0.16242555495397942,
239
+ "eval_loss": 0.1316749006509781,
240
+ "eval_runtime": 58.9058,
241
+ "eval_samples_per_second": 8.488,
242
+ "eval_steps_per_second": 0.543,
243
+ "step": 300
244
+ },
245
+ {
246
+ "epoch": 0.16783974011911207,
247
+ "grad_norm": 1.8671875,
248
+ "learning_rate": 4.812147777082029e-05,
249
+ "loss": 0.2035,
250
+ "step": 310
251
+ },
252
+ {
253
+ "epoch": 0.17325392528424471,
254
+ "grad_norm": 1.40625,
255
+ "learning_rate": 4.780839073262367e-05,
256
+ "loss": 0.1852,
257
+ "step": 320
258
+ },
259
+ {
260
+ "epoch": 0.17866811044937736,
261
+ "grad_norm": 1.375,
262
+ "learning_rate": 4.7495303694427054e-05,
263
+ "loss": 0.2054,
264
+ "step": 330
265
+ },
266
+ {
267
+ "epoch": 0.18408229561451,
268
+ "grad_norm": 2.046875,
269
+ "learning_rate": 4.7182216656230435e-05,
270
+ "loss": 0.1803,
271
+ "step": 340
272
+ },
273
+ {
274
+ "epoch": 0.18949648077964265,
275
+ "grad_norm": 1.6875,
276
+ "learning_rate": 4.6869129618033816e-05,
277
+ "loss": 0.1993,
278
+ "step": 350
279
+ },
280
+ {
281
+ "epoch": 0.19491066594477532,
282
+ "grad_norm": 1.3671875,
283
+ "learning_rate": 4.65560425798372e-05,
284
+ "loss": 0.1954,
285
+ "step": 360
286
+ },
287
+ {
288
+ "epoch": 0.20032485110990797,
289
+ "grad_norm": 1.03125,
290
+ "learning_rate": 4.624295554164057e-05,
291
+ "loss": 0.1802,
292
+ "step": 370
293
+ },
294
+ {
295
+ "epoch": 0.20573903627504062,
296
+ "grad_norm": 0.87890625,
297
+ "learning_rate": 4.5929868503443954e-05,
298
+ "loss": 0.1941,
299
+ "step": 380
300
+ },
301
+ {
302
+ "epoch": 0.21115322144017326,
303
+ "grad_norm": 1.234375,
304
+ "learning_rate": 4.561678146524734e-05,
305
+ "loss": 0.1706,
306
+ "step": 390
307
+ },
308
+ {
309
+ "epoch": 0.2165674066053059,
310
+ "grad_norm": 0.9765625,
311
+ "learning_rate": 4.5303694427050724e-05,
312
+ "loss": 0.1845,
313
+ "step": 400
314
+ },
315
+ {
316
+ "epoch": 0.2165674066053059,
317
+ "eval_loss": 0.11701580137014389,
318
+ "eval_runtime": 58.716,
319
+ "eval_samples_per_second": 8.516,
320
+ "eval_steps_per_second": 0.545,
321
+ "step": 400
322
+ },
323
+ {
324
+ "epoch": 0.22198159177043855,
325
+ "grad_norm": 1.5078125,
326
+ "learning_rate": 4.4990607388854105e-05,
327
+ "loss": 0.1386,
328
+ "step": 410
329
+ },
330
+ {
331
+ "epoch": 0.2273957769355712,
332
+ "grad_norm": 1.015625,
333
+ "learning_rate": 4.4677520350657486e-05,
334
+ "loss": 0.1599,
335
+ "step": 420
336
+ },
337
+ {
338
+ "epoch": 0.23280996210070384,
339
+ "grad_norm": 1.84375,
340
+ "learning_rate": 4.436443331246087e-05,
341
+ "loss": 0.1856,
342
+ "step": 430
343
+ },
344
+ {
345
+ "epoch": 0.2382241472658365,
346
+ "grad_norm": 0.8203125,
347
+ "learning_rate": 4.405134627426425e-05,
348
+ "loss": 0.1766,
349
+ "step": 440
350
+ },
351
+ {
352
+ "epoch": 0.24363833243096913,
353
+ "grad_norm": 0.88671875,
354
+ "learning_rate": 4.373825923606763e-05,
355
+ "loss": 0.1448,
356
+ "step": 450
357
+ },
358
+ {
359
+ "epoch": 0.24905251759610178,
360
+ "grad_norm": 1.4453125,
361
+ "learning_rate": 4.342517219787101e-05,
362
+ "loss": 0.1838,
363
+ "step": 460
364
+ },
365
+ {
366
+ "epoch": 0.25446670276123445,
367
+ "grad_norm": 0.87109375,
368
+ "learning_rate": 4.3112085159674393e-05,
369
+ "loss": 0.1698,
370
+ "step": 470
371
+ },
372
+ {
373
+ "epoch": 0.2598808879263671,
374
+ "grad_norm": 1.6328125,
375
+ "learning_rate": 4.2798998121477775e-05,
376
+ "loss": 0.1392,
377
+ "step": 480
378
+ },
379
+ {
380
+ "epoch": 0.26529507309149974,
381
+ "grad_norm": 1.1171875,
382
+ "learning_rate": 4.2485911083281156e-05,
383
+ "loss": 0.1769,
384
+ "step": 490
385
+ },
386
+ {
387
+ "epoch": 0.2707092582566324,
388
+ "grad_norm": 1.25,
389
+ "learning_rate": 4.217282404508454e-05,
390
+ "loss": 0.1506,
391
+ "step": 500
392
+ },
393
+ {
394
+ "epoch": 0.2707092582566324,
395
+ "eval_loss": 0.11454860121011734,
396
+ "eval_runtime": 58.3011,
397
+ "eval_samples_per_second": 8.576,
398
+ "eval_steps_per_second": 0.549,
399
+ "step": 500
400
+ },
401
+ {
402
+ "epoch": 0.27612344342176504,
403
+ "grad_norm": 0.6953125,
404
+ "learning_rate": 4.185973700688792e-05,
405
+ "loss": 0.1297,
406
+ "step": 510
407
+ },
408
+ {
409
+ "epoch": 0.2815376285868977,
410
+ "grad_norm": 1.3515625,
411
+ "learning_rate": 4.15466499686913e-05,
412
+ "loss": 0.1459,
413
+ "step": 520
414
+ },
415
+ {
416
+ "epoch": 0.2869518137520303,
417
+ "grad_norm": 1.3515625,
418
+ "learning_rate": 4.123356293049468e-05,
419
+ "loss": 0.1565,
420
+ "step": 530
421
+ },
422
+ {
423
+ "epoch": 0.292365998917163,
424
+ "grad_norm": 1.078125,
425
+ "learning_rate": 4.092047589229806e-05,
426
+ "loss": 0.1444,
427
+ "step": 540
428
+ },
429
+ {
430
+ "epoch": 0.2977801840822956,
431
+ "grad_norm": 1.1484375,
432
+ "learning_rate": 4.0607388854101445e-05,
433
+ "loss": 0.1581,
434
+ "step": 550
435
+ },
436
+ {
437
+ "epoch": 0.30319436924742826,
438
+ "grad_norm": 1.1875,
439
+ "learning_rate": 4.029430181590482e-05,
440
+ "loss": 0.1781,
441
+ "step": 560
442
+ },
443
+ {
444
+ "epoch": 0.3086085544125609,
445
+ "grad_norm": 0.8359375,
446
+ "learning_rate": 3.99812147777082e-05,
447
+ "loss": 0.1333,
448
+ "step": 570
449
+ },
450
+ {
451
+ "epoch": 0.31402273957769355,
452
+ "grad_norm": 0.82421875,
453
+ "learning_rate": 3.966812773951158e-05,
454
+ "loss": 0.1254,
455
+ "step": 580
456
+ },
457
+ {
458
+ "epoch": 0.3194369247428262,
459
+ "grad_norm": 1.625,
460
+ "learning_rate": 3.9355040701314964e-05,
461
+ "loss": 0.2092,
462
+ "step": 590
463
+ },
464
+ {
465
+ "epoch": 0.32485110990795885,
466
+ "grad_norm": 1.5234375,
467
+ "learning_rate": 3.9041953663118345e-05,
468
+ "loss": 0.1269,
469
+ "step": 600
470
+ },
471
+ {
472
+ "epoch": 0.32485110990795885,
473
+ "eval_loss": 0.1084875538945198,
474
+ "eval_runtime": 61.8367,
475
+ "eval_samples_per_second": 8.086,
476
+ "eval_steps_per_second": 0.517,
477
+ "step": 600
478
+ },
479
+ {
480
+ "epoch": 0.3302652950730915,
481
+ "grad_norm": 0.8203125,
482
+ "learning_rate": 3.8728866624921726e-05,
483
+ "loss": 0.1448,
484
+ "step": 610
485
+ },
486
+ {
487
+ "epoch": 0.33567948023822414,
488
+ "grad_norm": 0.90625,
489
+ "learning_rate": 3.841577958672511e-05,
490
+ "loss": 0.1529,
491
+ "step": 620
492
+ },
493
+ {
494
+ "epoch": 0.3410936654033568,
495
+ "grad_norm": 0.734375,
496
+ "learning_rate": 3.810269254852849e-05,
497
+ "loss": 0.1434,
498
+ "step": 630
499
+ },
500
+ {
501
+ "epoch": 0.34650785056848943,
502
+ "grad_norm": 1.1484375,
503
+ "learning_rate": 3.778960551033187e-05,
504
+ "loss": 0.1679,
505
+ "step": 640
506
+ },
507
+ {
508
+ "epoch": 0.3519220357336221,
509
+ "grad_norm": 1.1953125,
510
+ "learning_rate": 3.747651847213526e-05,
511
+ "loss": 0.1832,
512
+ "step": 650
513
+ },
514
+ {
515
+ "epoch": 0.3573362208987547,
516
+ "grad_norm": 0.96875,
517
+ "learning_rate": 3.716343143393864e-05,
518
+ "loss": 0.1634,
519
+ "step": 660
520
+ },
521
+ {
522
+ "epoch": 0.36275040606388737,
523
+ "grad_norm": 1.4140625,
524
+ "learning_rate": 3.685034439574202e-05,
525
+ "loss": 0.1799,
526
+ "step": 670
527
+ },
528
+ {
529
+ "epoch": 0.36816459122902,
530
+ "grad_norm": 0.6875,
531
+ "learning_rate": 3.65372573575454e-05,
532
+ "loss": 0.1308,
533
+ "step": 680
534
+ },
535
+ {
536
+ "epoch": 0.37357877639415266,
537
+ "grad_norm": 0.71875,
538
+ "learning_rate": 3.6224170319348784e-05,
539
+ "loss": 0.1282,
540
+ "step": 690
541
+ },
542
+ {
543
+ "epoch": 0.3789929615592853,
544
+ "grad_norm": 0.99609375,
545
+ "learning_rate": 3.5911083281152166e-05,
546
+ "loss": 0.159,
547
+ "step": 700
548
+ },
549
+ {
550
+ "epoch": 0.3789929615592853,
551
+ "eval_loss": 0.11033277213573456,
552
+ "eval_runtime": 59.5923,
553
+ "eval_samples_per_second": 8.39,
554
+ "eval_steps_per_second": 0.537,
555
+ "step": 700
556
+ },
557
+ {
558
+ "epoch": 0.38440714672441795,
559
+ "grad_norm": 1.9453125,
560
+ "learning_rate": 3.559799624295555e-05,
561
+ "loss": 0.1718,
562
+ "step": 710
563
+ },
564
+ {
565
+ "epoch": 0.38982133188955065,
566
+ "grad_norm": 1.328125,
567
+ "learning_rate": 3.528490920475893e-05,
568
+ "loss": 0.1584,
569
+ "step": 720
570
+ },
571
+ {
572
+ "epoch": 0.3952355170546833,
573
+ "grad_norm": 0.431640625,
574
+ "learning_rate": 3.497182216656231e-05,
575
+ "loss": 0.1556,
576
+ "step": 730
577
+ },
578
+ {
579
+ "epoch": 0.40064970221981594,
580
+ "grad_norm": 1.484375,
581
+ "learning_rate": 3.4658735128365685e-05,
582
+ "loss": 0.1379,
583
+ "step": 740
584
+ },
585
+ {
586
+ "epoch": 0.4060638873849486,
587
+ "grad_norm": 0.84375,
588
+ "learning_rate": 3.4345648090169066e-05,
589
+ "loss": 0.1542,
590
+ "step": 750
591
+ },
592
+ {
593
+ "epoch": 0.41147807255008123,
594
+ "grad_norm": 1.2578125,
595
+ "learning_rate": 3.403256105197245e-05,
596
+ "loss": 0.142,
597
+ "step": 760
598
+ },
599
+ {
600
+ "epoch": 0.4168922577152139,
601
+ "grad_norm": 0.92578125,
602
+ "learning_rate": 3.371947401377583e-05,
603
+ "loss": 0.1463,
604
+ "step": 770
605
+ },
606
+ {
607
+ "epoch": 0.4223064428803465,
608
+ "grad_norm": 1.1484375,
609
+ "learning_rate": 3.340638697557921e-05,
610
+ "loss": 0.1317,
611
+ "step": 780
612
+ },
613
+ {
614
+ "epoch": 0.42772062804547917,
615
+ "grad_norm": 1.2890625,
616
+ "learning_rate": 3.309329993738259e-05,
617
+ "loss": 0.1709,
618
+ "step": 790
619
+ },
620
+ {
621
+ "epoch": 0.4331348132106118,
622
+ "grad_norm": 0.9296875,
623
+ "learning_rate": 3.278021289918597e-05,
624
+ "loss": 0.1518,
625
+ "step": 800
626
+ },
627
+ {
628
+ "epoch": 0.4331348132106118,
629
+ "eval_loss": 0.10848626494407654,
630
+ "eval_runtime": 58.5847,
631
+ "eval_samples_per_second": 8.535,
632
+ "eval_steps_per_second": 0.546,
633
+ "step": 800
634
+ },
635
+ {
636
+ "epoch": 0.43854899837574446,
637
+ "grad_norm": 0.921875,
638
+ "learning_rate": 3.2467125860989355e-05,
639
+ "loss": 0.1298,
640
+ "step": 810
641
+ },
642
+ {
643
+ "epoch": 0.4439631835408771,
644
+ "grad_norm": 1.3046875,
645
+ "learning_rate": 3.2154038822792736e-05,
646
+ "loss": 0.1291,
647
+ "step": 820
648
+ },
649
+ {
650
+ "epoch": 0.44937736870600975,
651
+ "grad_norm": 0.70703125,
652
+ "learning_rate": 3.184095178459612e-05,
653
+ "loss": 0.1715,
654
+ "step": 830
655
+ },
656
+ {
657
+ "epoch": 0.4547915538711424,
658
+ "grad_norm": 1.375,
659
+ "learning_rate": 3.15278647463995e-05,
660
+ "loss": 0.1607,
661
+ "step": 840
662
+ },
663
+ {
664
+ "epoch": 0.46020573903627504,
665
+ "grad_norm": 0.671875,
666
+ "learning_rate": 3.121477770820288e-05,
667
+ "loss": 0.1261,
668
+ "step": 850
669
+ },
670
+ {
671
+ "epoch": 0.4656199242014077,
672
+ "grad_norm": 1.3984375,
673
+ "learning_rate": 3.090169067000626e-05,
674
+ "loss": 0.15,
675
+ "step": 860
676
+ },
677
+ {
678
+ "epoch": 0.47103410936654033,
679
+ "grad_norm": 0.91015625,
680
+ "learning_rate": 3.058860363180964e-05,
681
+ "loss": 0.1501,
682
+ "step": 870
683
+ },
684
+ {
685
+ "epoch": 0.476448294531673,
686
+ "grad_norm": 0.94140625,
687
+ "learning_rate": 3.0275516593613024e-05,
688
+ "loss": 0.1372,
689
+ "step": 880
690
+ },
691
+ {
692
+ "epoch": 0.4818624796968056,
693
+ "grad_norm": 1.0,
694
+ "learning_rate": 2.9962429555416406e-05,
695
+ "loss": 0.1725,
696
+ "step": 890
697
+ },
698
+ {
699
+ "epoch": 0.48727666486193827,
700
+ "grad_norm": 0.9609375,
701
+ "learning_rate": 2.9649342517219787e-05,
702
+ "loss": 0.1451,
703
+ "step": 900
704
+ },
705
+ {
706
+ "epoch": 0.48727666486193827,
707
+ "eval_loss": 0.1076415479183197,
708
+ "eval_runtime": 58.8592,
709
+ "eval_samples_per_second": 8.495,
710
+ "eval_steps_per_second": 0.544,
711
+ "step": 900
712
+ },
713
+ {
714
+ "epoch": 0.4926908500270709,
715
+ "grad_norm": 1.1796875,
716
+ "learning_rate": 2.9336255479023172e-05,
717
+ "loss": 0.1423,
718
+ "step": 910
719
+ },
720
+ {
721
+ "epoch": 0.49810503519220356,
722
+ "grad_norm": 1.109375,
723
+ "learning_rate": 2.9023168440826553e-05,
724
+ "loss": 0.1326,
725
+ "step": 920
726
+ },
727
+ {
728
+ "epoch": 0.5035192203573362,
729
+ "grad_norm": 0.9921875,
730
+ "learning_rate": 2.8710081402629935e-05,
731
+ "loss": 0.141,
732
+ "step": 930
733
+ },
734
+ {
735
+ "epoch": 0.5089334055224689,
736
+ "grad_norm": 2.015625,
737
+ "learning_rate": 2.8396994364433316e-05,
738
+ "loss": 0.1311,
739
+ "step": 940
740
+ },
741
+ {
742
+ "epoch": 0.5143475906876015,
743
+ "grad_norm": 1.234375,
744
+ "learning_rate": 2.8083907326236698e-05,
745
+ "loss": 0.1154,
746
+ "step": 950
747
+ },
748
+ {
749
+ "epoch": 0.5197617758527342,
750
+ "grad_norm": 0.78515625,
751
+ "learning_rate": 2.777082028804008e-05,
752
+ "loss": 0.1433,
753
+ "step": 960
754
+ },
755
+ {
756
+ "epoch": 0.5251759610178668,
757
+ "grad_norm": 1.546875,
758
+ "learning_rate": 2.745773324984346e-05,
759
+ "loss": 0.1601,
760
+ "step": 970
761
+ },
762
+ {
763
+ "epoch": 0.5305901461829995,
764
+ "grad_norm": 1.1796875,
765
+ "learning_rate": 2.7144646211646842e-05,
766
+ "loss": 0.1343,
767
+ "step": 980
768
+ },
769
+ {
770
+ "epoch": 0.5360043313481321,
771
+ "grad_norm": 0.953125,
772
+ "learning_rate": 2.683155917345022e-05,
773
+ "loss": 0.1467,
774
+ "step": 990
775
+ },
776
+ {
777
+ "epoch": 0.5414185165132648,
778
+ "grad_norm": 0.828125,
779
+ "learning_rate": 2.65184721352536e-05,
780
+ "loss": 0.1562,
781
+ "step": 1000
782
+ },
783
+ {
784
+ "epoch": 0.5414185165132648,
785
+ "eval_loss": 0.10366573929786682,
786
+ "eval_runtime": 60.3546,
787
+ "eval_samples_per_second": 8.284,
788
+ "eval_steps_per_second": 0.53,
789
+ "step": 1000
790
+ },
791
+ {
792
+ "epoch": 0.5468327016783974,
793
+ "grad_norm": 1.578125,
794
+ "learning_rate": 2.6205385097056983e-05,
795
+ "loss": 0.1299,
796
+ "step": 1010
797
+ },
798
+ {
799
+ "epoch": 0.5522468868435301,
800
+ "grad_norm": 1.1640625,
801
+ "learning_rate": 2.5892298058860364e-05,
802
+ "loss": 0.1386,
803
+ "step": 1020
804
+ },
805
+ {
806
+ "epoch": 0.5576610720086627,
807
+ "grad_norm": 0.9921875,
808
+ "learning_rate": 2.5579211020663746e-05,
809
+ "loss": 0.1212,
810
+ "step": 1030
811
+ },
812
+ {
813
+ "epoch": 0.5630752571737954,
814
+ "grad_norm": 0.671875,
815
+ "learning_rate": 2.5266123982467127e-05,
816
+ "loss": 0.1251,
817
+ "step": 1040
818
+ },
819
+ {
820
+ "epoch": 0.568489442338928,
821
+ "grad_norm": 1.0625,
822
+ "learning_rate": 2.495303694427051e-05,
823
+ "loss": 0.1275,
824
+ "step": 1050
825
+ },
826
+ {
827
+ "epoch": 0.5739036275040607,
828
+ "grad_norm": 0.66796875,
829
+ "learning_rate": 2.463994990607389e-05,
830
+ "loss": 0.1098,
831
+ "step": 1060
832
+ },
833
+ {
834
+ "epoch": 0.5793178126691932,
835
+ "grad_norm": 1.265625,
836
+ "learning_rate": 2.432686286787727e-05,
837
+ "loss": 0.1297,
838
+ "step": 1070
839
+ },
840
+ {
841
+ "epoch": 0.584731997834326,
842
+ "grad_norm": 1.5625,
843
+ "learning_rate": 2.4013775829680653e-05,
844
+ "loss": 0.1487,
845
+ "step": 1080
846
+ },
847
+ {
848
+ "epoch": 0.5901461829994585,
849
+ "grad_norm": 0.94921875,
850
+ "learning_rate": 2.3700688791484034e-05,
851
+ "loss": 0.1286,
852
+ "step": 1090
853
+ },
854
+ {
855
+ "epoch": 0.5955603681645912,
856
+ "grad_norm": 0.875,
857
+ "learning_rate": 2.3387601753287412e-05,
858
+ "loss": 0.1456,
859
+ "step": 1100
860
+ },
861
+ {
862
+ "epoch": 0.5955603681645912,
863
+ "eval_loss": 0.09888758510351181,
864
+ "eval_runtime": 62.4618,
865
+ "eval_samples_per_second": 8.005,
866
+ "eval_steps_per_second": 0.512,
867
+ "step": 1100
868
+ },
869
+ {
870
+ "epoch": 0.6009745533297238,
871
+ "grad_norm": 0.88671875,
872
+ "learning_rate": 2.3074514715090797e-05,
873
+ "loss": 0.1473,
874
+ "step": 1110
875
+ },
876
+ {
877
+ "epoch": 0.6063887384948565,
878
+ "grad_norm": 1.1953125,
879
+ "learning_rate": 2.2761427676894178e-05,
880
+ "loss": 0.155,
881
+ "step": 1120
882
+ },
883
+ {
884
+ "epoch": 0.6118029236599891,
885
+ "grad_norm": 0.83203125,
886
+ "learning_rate": 2.244834063869756e-05,
887
+ "loss": 0.1251,
888
+ "step": 1130
889
+ },
890
+ {
891
+ "epoch": 0.6172171088251218,
892
+ "grad_norm": 1.0078125,
893
+ "learning_rate": 2.213525360050094e-05,
894
+ "loss": 0.1495,
895
+ "step": 1140
896
+ },
897
+ {
898
+ "epoch": 0.6226312939902545,
899
+ "grad_norm": 2.109375,
900
+ "learning_rate": 2.1822166562304323e-05,
901
+ "loss": 0.142,
902
+ "step": 1150
903
+ },
904
+ {
905
+ "epoch": 0.6280454791553871,
906
+ "grad_norm": 1.0859375,
907
+ "learning_rate": 2.1509079524107704e-05,
908
+ "loss": 0.1303,
909
+ "step": 1160
910
+ },
911
+ {
912
+ "epoch": 0.6334596643205198,
913
+ "grad_norm": 0.9453125,
914
+ "learning_rate": 2.1195992485911085e-05,
915
+ "loss": 0.1263,
916
+ "step": 1170
917
+ },
918
+ {
919
+ "epoch": 0.6388738494856524,
920
+ "grad_norm": 0.84375,
921
+ "learning_rate": 2.0882905447714467e-05,
922
+ "loss": 0.1133,
923
+ "step": 1180
924
+ },
925
+ {
926
+ "epoch": 0.6442880346507851,
927
+ "grad_norm": 1.3125,
928
+ "learning_rate": 2.0569818409517845e-05,
929
+ "loss": 0.1411,
930
+ "step": 1190
931
+ },
932
+ {
933
+ "epoch": 0.6497022198159177,
934
+ "grad_norm": 0.90234375,
935
+ "learning_rate": 2.0256731371321226e-05,
936
+ "loss": 0.1571,
937
+ "step": 1200
938
+ },
939
+ {
940
+ "epoch": 0.6497022198159177,
941
+ "eval_loss": 0.09719575196504593,
942
+ "eval_runtime": 61.5385,
943
+ "eval_samples_per_second": 8.125,
944
+ "eval_steps_per_second": 0.52,
945
+ "step": 1200
946
+ },
947
+ {
948
+ "epoch": 0.6551164049810504,
949
+ "grad_norm": 0.6328125,
950
+ "learning_rate": 1.9943644333124608e-05,
951
+ "loss": 0.1521,
952
+ "step": 1210
953
+ },
954
+ {
955
+ "epoch": 0.660530590146183,
956
+ "grad_norm": 0.70703125,
957
+ "learning_rate": 1.963055729492799e-05,
958
+ "loss": 0.1128,
959
+ "step": 1220
960
+ },
961
+ {
962
+ "epoch": 0.6659447753113157,
963
+ "grad_norm": 1.0078125,
964
+ "learning_rate": 1.931747025673137e-05,
965
+ "loss": 0.134,
966
+ "step": 1230
967
+ },
968
+ {
969
+ "epoch": 0.6713589604764483,
970
+ "grad_norm": 1.0390625,
971
+ "learning_rate": 1.9004383218534755e-05,
972
+ "loss": 0.1263,
973
+ "step": 1240
974
+ },
975
+ {
976
+ "epoch": 0.676773145641581,
977
+ "grad_norm": 0.92578125,
978
+ "learning_rate": 1.8691296180338137e-05,
979
+ "loss": 0.1273,
980
+ "step": 1250
981
+ },
982
+ {
983
+ "epoch": 0.6821873308067136,
984
+ "grad_norm": 0.75,
985
+ "learning_rate": 1.8378209142141518e-05,
986
+ "loss": 0.1373,
987
+ "step": 1260
988
+ },
989
+ {
990
+ "epoch": 0.6876015159718463,
991
+ "grad_norm": 0.58984375,
992
+ "learning_rate": 1.80651221039449e-05,
993
+ "loss": 0.1242,
994
+ "step": 1270
995
+ },
996
+ {
997
+ "epoch": 0.6930157011369789,
998
+ "grad_norm": 0.40234375,
999
+ "learning_rate": 1.775203506574828e-05,
1000
+ "loss": 0.1424,
1001
+ "step": 1280
1002
+ },
1003
+ {
1004
+ "epoch": 0.6984298863021116,
1005
+ "grad_norm": 0.984375,
1006
+ "learning_rate": 1.743894802755166e-05,
1007
+ "loss": 0.1053,
1008
+ "step": 1290
1009
+ },
1010
+ {
1011
+ "epoch": 0.7038440714672441,
1012
+ "grad_norm": 0.97265625,
1013
+ "learning_rate": 1.712586098935504e-05,
1014
+ "loss": 0.1195,
1015
+ "step": 1300
1016
+ },
1017
+ {
1018
+ "epoch": 0.7038440714672441,
1019
+ "eval_loss": 0.09898315370082855,
1020
+ "eval_runtime": 59.819,
1021
+ "eval_samples_per_second": 8.359,
1022
+ "eval_steps_per_second": 0.535,
1023
+ "step": 1300
1024
+ },
1025
+ {
1026
+ "epoch": 0.7092582566323768,
1027
+ "grad_norm": 0.5625,
1028
+ "learning_rate": 1.681277395115842e-05,
1029
+ "loss": 0.1339,
1030
+ "step": 1310
1031
+ },
1032
+ {
1033
+ "epoch": 0.7146724417975094,
1034
+ "grad_norm": 0.92578125,
1035
+ "learning_rate": 1.6499686912961803e-05,
1036
+ "loss": 0.155,
1037
+ "step": 1320
1038
+ },
1039
+ {
1040
+ "epoch": 0.7200866269626421,
1041
+ "grad_norm": 1.421875,
1042
+ "learning_rate": 1.6186599874765184e-05,
1043
+ "loss": 0.1275,
1044
+ "step": 1330
1045
+ },
1046
+ {
1047
+ "epoch": 0.7255008121277747,
1048
+ "grad_norm": 1.25,
1049
+ "learning_rate": 1.5873512836568566e-05,
1050
+ "loss": 0.1454,
1051
+ "step": 1340
1052
+ },
1053
+ {
1054
+ "epoch": 0.7309149972929074,
1055
+ "grad_norm": 1.0078125,
1056
+ "learning_rate": 1.5560425798371947e-05,
1057
+ "loss": 0.1184,
1058
+ "step": 1350
1059
+ },
1060
+ {
1061
+ "epoch": 0.73632918245804,
1062
+ "grad_norm": 0.546875,
1063
+ "learning_rate": 1.5247338760175329e-05,
1064
+ "loss": 0.1231,
1065
+ "step": 1360
1066
+ },
1067
+ {
1068
+ "epoch": 0.7417433676231727,
1069
+ "grad_norm": 0.77734375,
1070
+ "learning_rate": 1.4934251721978712e-05,
1071
+ "loss": 0.1245,
1072
+ "step": 1370
1073
+ },
1074
+ {
1075
+ "epoch": 0.7471575527883053,
1076
+ "grad_norm": 1.1484375,
1077
+ "learning_rate": 1.4621164683782093e-05,
1078
+ "loss": 0.1388,
1079
+ "step": 1380
1080
+ },
1081
+ {
1082
+ "epoch": 0.752571737953438,
1083
+ "grad_norm": 1.234375,
1084
+ "learning_rate": 1.4308077645585475e-05,
1085
+ "loss": 0.1599,
1086
+ "step": 1390
1087
+ },
1088
+ {
1089
+ "epoch": 0.7579859231185706,
1090
+ "grad_norm": 1.2265625,
1091
+ "learning_rate": 1.3994990607388856e-05,
1092
+ "loss": 0.1481,
1093
+ "step": 1400
1094
+ },
1095
+ {
1096
+ "epoch": 0.7579859231185706,
1097
+ "eval_loss": 0.09811025857925415,
1098
+ "eval_runtime": 58.4243,
1099
+ "eval_samples_per_second": 8.558,
1100
+ "eval_steps_per_second": 0.548,
1101
+ "step": 1400
1102
+ },
1103
+ {
1104
+ "epoch": 0.7634001082837033,
1105
+ "grad_norm": 0.72265625,
1106
+ "learning_rate": 1.3681903569192236e-05,
1107
+ "loss": 0.1228,
1108
+ "step": 1410
1109
+ },
1110
+ {
1111
+ "epoch": 0.7688142934488359,
1112
+ "grad_norm": 0.8359375,
1113
+ "learning_rate": 1.3368816530995617e-05,
1114
+ "loss": 0.1356,
1115
+ "step": 1420
1116
+ },
1117
+ {
1118
+ "epoch": 0.7742284786139686,
1119
+ "grad_norm": 1.046875,
1120
+ "learning_rate": 1.3055729492798999e-05,
1121
+ "loss": 0.1431,
1122
+ "step": 1430
1123
+ },
1124
+ {
1125
+ "epoch": 0.7796426637791013,
1126
+ "grad_norm": 0.9140625,
1127
+ "learning_rate": 1.274264245460238e-05,
1128
+ "loss": 0.1154,
1129
+ "step": 1440
1130
+ },
1131
+ {
1132
+ "epoch": 0.7850568489442339,
1133
+ "grad_norm": 0.76953125,
1134
+ "learning_rate": 1.2429555416405761e-05,
1135
+ "loss": 0.1106,
1136
+ "step": 1450
1137
+ },
1138
+ {
1139
+ "epoch": 0.7904710341093666,
1140
+ "grad_norm": 0.8046875,
1141
+ "learning_rate": 1.2116468378209143e-05,
1142
+ "loss": 0.1172,
1143
+ "step": 1460
1144
+ },
1145
+ {
1146
+ "epoch": 0.7958852192744992,
1147
+ "grad_norm": 0.7578125,
1148
+ "learning_rate": 1.1803381340012524e-05,
1149
+ "loss": 0.1424,
1150
+ "step": 1470
1151
+ },
1152
+ {
1153
+ "epoch": 0.8012994044396319,
1154
+ "grad_norm": 1.0,
1155
+ "learning_rate": 1.1490294301815906e-05,
1156
+ "loss": 0.1328,
1157
+ "step": 1480
1158
+ },
1159
+ {
1160
+ "epoch": 0.8067135896047645,
1161
+ "grad_norm": 2.171875,
1162
+ "learning_rate": 1.1177207263619287e-05,
1163
+ "loss": 0.1363,
1164
+ "step": 1490
1165
+ },
1166
+ {
1167
+ "epoch": 0.8121277747698972,
1168
+ "grad_norm": 0.88671875,
1169
+ "learning_rate": 1.0864120225422668e-05,
1170
+ "loss": 0.1255,
1171
+ "step": 1500
1172
+ },
1173
+ {
1174
+ "epoch": 0.8121277747698972,
1175
+ "eval_loss": 0.0966864824295044,
1176
+ "eval_runtime": 61.9578,
1177
+ "eval_samples_per_second": 8.07,
1178
+ "eval_steps_per_second": 0.516,
1179
+ "step": 1500
1180
+ },
1181
+ {
1182
+ "epoch": 0.8175419599350298,
1183
+ "grad_norm": 1.1171875,
1184
+ "learning_rate": 1.0551033187226048e-05,
1185
+ "loss": 0.1397,
1186
+ "step": 1510
1187
+ },
1188
+ {
1189
+ "epoch": 0.8229561451001625,
1190
+ "grad_norm": 1.421875,
1191
+ "learning_rate": 1.023794614902943e-05,
1192
+ "loss": 0.1289,
1193
+ "step": 1520
1194
+ },
1195
+ {
1196
+ "epoch": 0.828370330265295,
1197
+ "grad_norm": 1.34375,
1198
+ "learning_rate": 9.924859110832813e-06,
1199
+ "loss": 0.1231,
1200
+ "step": 1530
1201
+ },
1202
+ {
1203
+ "epoch": 0.8337845154304278,
1204
+ "grad_norm": 1.15625,
1205
+ "learning_rate": 9.611772072636194e-06,
1206
+ "loss": 0.1477,
1207
+ "step": 1540
1208
+ },
1209
+ {
1210
+ "epoch": 0.8391987005955603,
1211
+ "grad_norm": 0.59765625,
1212
+ "learning_rate": 9.298685034439576e-06,
1213
+ "loss": 0.1228,
1214
+ "step": 1550
1215
+ },
1216
+ {
1217
+ "epoch": 0.844612885760693,
1218
+ "grad_norm": 1.59375,
1219
+ "learning_rate": 8.985597996242955e-06,
1220
+ "loss": 0.1745,
1221
+ "step": 1560
1222
+ },
1223
+ {
1224
+ "epoch": 0.8500270709258256,
1225
+ "grad_norm": 0.859375,
1226
+ "learning_rate": 8.672510958046337e-06,
1227
+ "loss": 0.1565,
1228
+ "step": 1570
1229
+ },
1230
+ {
1231
+ "epoch": 0.8554412560909583,
1232
+ "grad_norm": 0.95703125,
1233
+ "learning_rate": 8.359423919849718e-06,
1234
+ "loss": 0.1503,
1235
+ "step": 1580
1236
+ },
1237
+ {
1238
+ "epoch": 0.8608554412560909,
1239
+ "grad_norm": 1.6875,
1240
+ "learning_rate": 8.0463368816531e-06,
1241
+ "loss": 0.1569,
1242
+ "step": 1590
1243
+ },
1244
+ {
1245
+ "epoch": 0.8662696264212236,
1246
+ "grad_norm": 0.96875,
1247
+ "learning_rate": 7.733249843456483e-06,
1248
+ "loss": 0.1408,
1249
+ "step": 1600
1250
+ },
1251
+ {
1252
+ "epoch": 0.8662696264212236,
1253
+ "eval_loss": 0.09672338515520096,
1254
+ "eval_runtime": 60.7387,
1255
+ "eval_samples_per_second": 8.232,
1256
+ "eval_steps_per_second": 0.527,
1257
+ "step": 1600
1258
+ },
1259
+ {
1260
+ "epoch": 0.8716838115863562,
1261
+ "grad_norm": 1.078125,
1262
+ "learning_rate": 7.420162805259863e-06,
1263
+ "loss": 0.1313,
1264
+ "step": 1610
1265
+ },
1266
+ {
1267
+ "epoch": 0.8770979967514889,
1268
+ "grad_norm": 0.482421875,
1269
+ "learning_rate": 7.107075767063244e-06,
1270
+ "loss": 0.1506,
1271
+ "step": 1620
1272
+ },
1273
+ {
1274
+ "epoch": 0.8825121819166215,
1275
+ "grad_norm": 0.796875,
1276
+ "learning_rate": 6.793988728866625e-06,
1277
+ "loss": 0.1274,
1278
+ "step": 1630
1279
+ },
1280
+ {
1281
+ "epoch": 0.8879263670817542,
1282
+ "grad_norm": 1.515625,
1283
+ "learning_rate": 6.4809016906700065e-06,
1284
+ "loss": 0.1471,
1285
+ "step": 1640
1286
+ },
1287
+ {
1288
+ "epoch": 0.8933405522468868,
1289
+ "grad_norm": 0.6875,
1290
+ "learning_rate": 6.167814652473388e-06,
1291
+ "loss": 0.142,
1292
+ "step": 1650
1293
+ },
1294
+ {
1295
+ "epoch": 0.8987547374120195,
1296
+ "grad_norm": 1.296875,
1297
+ "learning_rate": 5.854727614276769e-06,
1298
+ "loss": 0.1084,
1299
+ "step": 1660
1300
+ },
1301
+ {
1302
+ "epoch": 0.9041689225771521,
1303
+ "grad_norm": 0.97265625,
1304
+ "learning_rate": 5.54164057608015e-06,
1305
+ "loss": 0.1044,
1306
+ "step": 1670
1307
+ },
1308
+ {
1309
+ "epoch": 0.9095831077422848,
1310
+ "grad_norm": 0.96484375,
1311
+ "learning_rate": 5.228553537883532e-06,
1312
+ "loss": 0.147,
1313
+ "step": 1680
1314
+ },
1315
+ {
1316
+ "epoch": 0.9149972929074174,
1317
+ "grad_norm": 0.4765625,
1318
+ "learning_rate": 4.9154664996869136e-06,
1319
+ "loss": 0.1254,
1320
+ "step": 1690
1321
+ },
1322
+ {
1323
+ "epoch": 0.9204114780725501,
1324
+ "grad_norm": 0.7109375,
1325
+ "learning_rate": 4.602379461490294e-06,
1326
+ "loss": 0.1208,
1327
+ "step": 1700
1328
+ },
1329
+ {
1330
+ "epoch": 0.9204114780725501,
1331
+ "eval_loss": 0.09627044945955276,
1332
+ "eval_runtime": 61.5631,
1333
+ "eval_samples_per_second": 8.122,
1334
+ "eval_steps_per_second": 0.52,
1335
+ "step": 1700
1336
+ },
1337
+ {
1338
+ "epoch": 0.9258256632376828,
1339
+ "grad_norm": 1.015625,
1340
+ "learning_rate": 4.289292423293676e-06,
1341
+ "loss": 0.1468,
1342
+ "step": 1710
1343
+ },
1344
+ {
1345
+ "epoch": 0.9312398484028154,
1346
+ "grad_norm": 1.0546875,
1347
+ "learning_rate": 3.976205385097057e-06,
1348
+ "loss": 0.1231,
1349
+ "step": 1720
1350
+ },
1351
+ {
1352
+ "epoch": 0.9366540335679481,
1353
+ "grad_norm": 1.4453125,
1354
+ "learning_rate": 3.6631183469004384e-06,
1355
+ "loss": 0.1548,
1356
+ "step": 1730
1357
+ },
1358
+ {
1359
+ "epoch": 0.9420682187330807,
1360
+ "grad_norm": 1.125,
1361
+ "learning_rate": 3.35003130870382e-06,
1362
+ "loss": 0.1332,
1363
+ "step": 1740
1364
+ },
1365
+ {
1366
+ "epoch": 0.9474824038982134,
1367
+ "grad_norm": 0.84765625,
1368
+ "learning_rate": 3.036944270507201e-06,
1369
+ "loss": 0.1382,
1370
+ "step": 1750
1371
+ },
1372
+ {
1373
+ "epoch": 0.952896589063346,
1374
+ "grad_norm": 0.72265625,
1375
+ "learning_rate": 2.7238572323105826e-06,
1376
+ "loss": 0.1203,
1377
+ "step": 1760
1378
+ },
1379
+ {
1380
+ "epoch": 0.9583107742284787,
1381
+ "grad_norm": 0.96875,
1382
+ "learning_rate": 2.410770194113964e-06,
1383
+ "loss": 0.1206,
1384
+ "step": 1770
1385
+ },
1386
+ {
1387
+ "epoch": 0.9637249593936112,
1388
+ "grad_norm": 1.2578125,
1389
+ "learning_rate": 2.0976831559173454e-06,
1390
+ "loss": 0.1512,
1391
+ "step": 1780
1392
+ },
1393
+ {
1394
+ "epoch": 0.969139144558744,
1395
+ "grad_norm": 1.21875,
1396
+ "learning_rate": 1.7845961177207264e-06,
1397
+ "loss": 0.1522,
1398
+ "step": 1790
1399
+ },
1400
+ {
1401
+ "epoch": 0.9745533297238765,
1402
+ "grad_norm": 0.63671875,
1403
+ "learning_rate": 1.4715090795241078e-06,
1404
+ "loss": 0.1228,
1405
+ "step": 1800
1406
+ },
1407
+ {
1408
+ "epoch": 0.9745533297238765,
1409
+ "eval_loss": 0.09588468819856644,
1410
+ "eval_runtime": 61.1963,
1411
+ "eval_samples_per_second": 8.17,
1412
+ "eval_steps_per_second": 0.523,
1413
+ "step": 1800
1414
+ },
1415
+ {
1416
+ "epoch": 0.9799675148890092,
1417
+ "grad_norm": 0.609375,
1418
+ "learning_rate": 1.1584220413274892e-06,
1419
+ "loss": 0.1349,
1420
+ "step": 1810
1421
+ },
1422
+ {
1423
+ "epoch": 0.9853817000541418,
1424
+ "grad_norm": 0.84765625,
1425
+ "learning_rate": 8.453350031308704e-07,
1426
+ "loss": 0.1268,
1427
+ "step": 1820
1428
+ },
1429
+ {
1430
+ "epoch": 0.9907958852192745,
1431
+ "grad_norm": 1.4609375,
1432
+ "learning_rate": 5.322479649342517e-07,
1433
+ "loss": 0.1416,
1434
+ "step": 1830
1435
+ },
1436
+ {
1437
+ "epoch": 0.9962100703844071,
1438
+ "grad_norm": 1.03125,
1439
+ "learning_rate": 2.1916092673763307e-07,
1440
+ "loss": 0.1308,
1441
+ "step": 1840
1442
+ }
1443
+ ],
1444
+ "logging_steps": 10,
1445
+ "max_steps": 1847,
1446
+ "num_input_tokens_seen": 0,
1447
+ "num_train_epochs": 1,
1448
+ "save_steps": 500,
1449
+ "stateful_callbacks": {
1450
+ "TrainerControl": {
1451
+ "args": {
1452
+ "should_epoch_stop": false,
1453
+ "should_evaluate": false,
1454
+ "should_log": false,
1455
+ "should_save": true,
1456
+ "should_training_stop": true
1457
+ },
1458
+ "attributes": {}
1459
+ }
1460
+ },
1461
+ "total_flos": 1.1050860758570842e+18,
1462
+ "train_batch_size": 64,
1463
+ "trial_name": null,
1464
+ "trial_params": null
1465
+ }
checkpoint-1847/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79f2ac024c40a27b9483434310575f77c9c0e3b6afd5dcfec7b089dbd6f9f330
3
+ size 5176
git_hash.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ d9684ca595f0c6b1faee171bb4e45db9fb542450
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 12845056,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "ColQwen2Processor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "max_pixels": 12845056,
26
+ "min_pixels": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"validation_set": {"ndcg_at_1": 0.808, "ndcg_at_3": 0.86064, "ndcg_at_5": 0.87217, "ndcg_at_10": 0.87935, "ndcg_at_20": 0.8819, "ndcg_at_50": 0.8855, "ndcg_at_100": 0.88709, "map_at_1": 0.808, "map_at_3": 0.84833, "map_at_5": 0.85473, "map_at_10": 0.85773, "map_at_20": 0.85844, "map_at_50": 0.85904, "map_at_100": 0.85917, "recall_at_1": 0.808, "recall_at_3": 0.896, "recall_at_5": 0.924, "recall_at_10": 0.946, "recall_at_20": 0.956, "recall_at_50": 0.974, "recall_at_100": 0.984, "precision_at_1": 0.808, "precision_at_3": 0.29867, "precision_at_5": 0.1848, "precision_at_10": 0.0946, "precision_at_20": 0.0478, "precision_at_50": 0.01948, "precision_at_100": 0.00984, "mrr_at_1": 0.812, "mrr_at_3": 0.8503333333333334, "mrr_at_5": 0.8566333333333334, "mrr_at_10": 0.8593904761904761, "mrr_at_20": 0.8602524031524031, "mrr_at_50": 0.8609465715630416, "mrr_at_100": 0.8611005335017311, "naucs_at_1_max": 0.3515086743587615, "naucs_at_1_std": 0.03249771727400904, "naucs_at_1_diff1": 0.9474194820287203, "naucs_at_3_max": 0.5962878076950838, "naucs_at_3_std": 0.3982711326066551, "naucs_at_3_diff1": 0.9212715657258372, "naucs_at_5_max": 0.6614698510983347, "naucs_at_5_std": 0.6334095041525363, "naucs_at_5_diff1": 0.9211877733549554, "naucs_at_10_max": 0.6447418473562261, "naucs_at_10_std": 0.7033405954974616, "naucs_at_10_diff1": 0.9290209911124954, "naucs_at_20_max": 0.6058059587471368, "naucs_at_20_std": 0.6962906374671136, "naucs_at_20_diff1": 0.9307147101264778, "naucs_at_50_max": 0.6038210155857129, "naucs_at_50_std": 0.7816921640451006, "naucs_at_50_diff1": 0.9384112619406629, "naucs_at_100_max": 0.663923902894502, "naucs_at_100_std": 1.0, "naucs_at_100_diff1": 0.9325980392156906}, "syntheticDocQA_energy": {"ndcg_at_1": 0.93, "ndcg_at_3": 0.94893, "ndcg_at_5": 0.95666, "ndcg_at_10": 0.95956, "ndcg_at_20": 0.95956, "ndcg_at_50": 0.96171, "ndcg_at_100": 0.96171, "map_at_1": 0.93, "map_at_3": 0.945, "map_at_5": 0.949, "map_at_10": 0.95, "map_at_20": 0.95, "map_at_50": 0.95042, "map_at_100": 0.95042, "recall_at_1": 0.93, "recall_at_3": 0.96, "recall_at_5": 0.98, "recall_at_10": 0.99, "recall_at_20": 0.99, "recall_at_50": 1.0, "recall_at_100": 1.0, "precision_at_1": 0.93, "precision_at_3": 0.32, "precision_at_5": 0.196, "precision_at_10": 0.099, "precision_at_20": 0.0495, "precision_at_50": 0.02, "precision_at_100": 0.01, "mrr_at_1": 0.93, "mrr_at_3": 0.9483333333333333, "mrr_at_5": 0.9503333333333334, "mrr_at_10": 0.9513333333333334, "mrr_at_20": 0.9513333333333334, "mrr_at_50": 0.9517878787878787, "mrr_at_100": 0.9517878787878787, "naucs_at_1_max": 0.5745631585967725, "naucs_at_1_std": -0.473856209150329, "naucs_at_1_diff1": 0.9626517273576113, "naucs_at_3_max": 0.7414799253034536, "naucs_at_3_std": -0.28408029878618163, "naucs_at_3_diff1": 0.9346405228758151, "naucs_at_5_max": 0.8692810457516353, "naucs_at_5_std": 0.24042950513538955, "naucs_at_5_diff1": 0.9346405228758136, "naucs_at_10_max": 0.8692810457516413, "naucs_at_10_std": 0.35807656395891135, "naucs_at_10_diff1": 0.8692810457516413, "naucs_at_20_max": 0.8692810457516413, "naucs_at_20_std": 0.35807656395891135, "naucs_at_20_diff1": 0.8692810457516413, "naucs_at_50_max": NaN, "naucs_at_50_std": NaN, "naucs_at_50_diff1": NaN, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN}, "syntheticDocQA_healthcare_industry": {"ndcg_at_1": 0.95, "ndcg_at_3": 0.98155, "ndcg_at_5": 0.98155, "ndcg_at_10": 0.98155, "ndcg_at_20": 0.98155, "ndcg_at_50": 0.98155, "ndcg_at_100": 0.98155, "map_at_1": 0.95, "map_at_3": 0.975, "map_at_5": 0.975, "map_at_10": 0.975, "map_at_20": 0.975, "map_at_50": 0.975, "map_at_100": 0.975, "recall_at_1": 0.95, "recall_at_3": 1.0, "recall_at_5": 1.0, "recall_at_10": 1.0, "recall_at_20": 1.0, "recall_at_50": 1.0, "recall_at_100": 1.0, "precision_at_1": 0.95, "precision_at_3": 0.33333, "precision_at_5": 0.2, "precision_at_10": 0.1, "precision_at_20": 0.05, "precision_at_50": 0.02, "precision_at_100": 0.01, "mrr_at_1": 0.95, "mrr_at_3": 0.975, "mrr_at_5": 0.975, "mrr_at_10": 0.975, "mrr_at_20": 0.975, "mrr_at_50": 0.975, "mrr_at_100": 0.975, "naucs_at_1_max": 0.7777777777777775, "naucs_at_1_std": 0.1309056956115747, "naucs_at_1_diff1": 1.0, "naucs_at_3_max": 1.0, "naucs_at_3_std": 1.0, "naucs_at_3_diff1": 1.0, "naucs_at_5_max": 1.0, "naucs_at_5_std": 1.0, "naucs_at_5_diff1": 1.0, "naucs_at_10_max": 1.0, "naucs_at_10_std": 1.0, "naucs_at_10_diff1": 1.0, "naucs_at_20_max": 1.0, "naucs_at_20_std": 1.0, "naucs_at_20_diff1": 1.0, "naucs_at_50_max": NaN, "naucs_at_50_std": NaN, "naucs_at_50_diff1": NaN, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN}, "syntheticDocQA_artificial_intelligence_test": {"ndcg_at_1": 0.98, "ndcg_at_3": 0.98631, "ndcg_at_5": 0.99062, "ndcg_at_10": 0.99062, "ndcg_at_20": 0.99062, "ndcg_at_50": 0.99062, "ndcg_at_100": 0.99062, "map_at_1": 0.98, "map_at_3": 0.985, "map_at_5": 0.9875, "map_at_10": 0.9875, "map_at_20": 0.9875, "map_at_50": 0.9875, "map_at_100": 0.9875, "recall_at_1": 0.98, "recall_at_3": 0.99, "recall_at_5": 1.0, "recall_at_10": 1.0, "recall_at_20": 1.0, "recall_at_50": 1.0, "recall_at_100": 1.0, "precision_at_1": 0.98, "precision_at_3": 0.33, "precision_at_5": 0.2, "precision_at_10": 0.1, "precision_at_20": 0.05, "precision_at_50": 0.02, "precision_at_100": 0.01, "mrr_at_1": 0.98, "mrr_at_3": 0.985, "mrr_at_5": 0.9875, "mrr_at_10": 0.9875, "mrr_at_20": 0.9875, "mrr_at_50": 0.9875, "mrr_at_100": 0.9875, "naucs_at_1_max": 0.7770774976657365, "naucs_at_1_std": -0.22035480859010095, "naucs_at_1_diff1": 0.9346405228758133, "naucs_at_3_max": 1.0, "naucs_at_3_std": 0.12278244631183229, "naucs_at_3_diff1": 1.0, "naucs_at_5_max": 1.0, "naucs_at_5_std": 1.0, "naucs_at_5_diff1": 1.0, "naucs_at_10_max": 1.0, "naucs_at_10_std": 1.0, "naucs_at_10_diff1": 1.0, "naucs_at_20_max": 1.0, "naucs_at_20_std": 1.0, "naucs_at_20_diff1": 1.0, "naucs_at_50_max": NaN, "naucs_at_50_std": NaN, "naucs_at_50_diff1": NaN, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN}, "syntheticDocQA_government_reports": {"ndcg_at_1": 0.86, "ndcg_at_3": 0.93309, "ndcg_at_5": 0.9374, "ndcg_at_10": 0.94055, "ndcg_at_20": 0.94055, "ndcg_at_50": 0.94055, "ndcg_at_100": 0.94055, "map_at_1": 0.86, "map_at_3": 0.91667, "map_at_5": 0.91917, "map_at_10": 0.92042, "map_at_20": 0.92042, "map_at_50": 0.92042, "map_at_100": 0.92042, "recall_at_1": 0.86, "recall_at_3": 0.98, "recall_at_5": 0.99, "recall_at_10": 1.0, "recall_at_20": 1.0, "recall_at_50": 1.0, "recall_at_100": 1.0, "precision_at_1": 0.86, "precision_at_3": 0.32667, "precision_at_5": 0.198, "precision_at_10": 0.1, "precision_at_20": 0.05, "precision_at_50": 0.02, "precision_at_100": 0.01, "mrr_at_1": 0.87, "mrr_at_3": 0.925, "mrr_at_5": 0.925, "mrr_at_10": 0.92625, "mrr_at_20": 0.92625, "mrr_at_50": 0.92625, "mrr_at_100": 0.92625, "naucs_at_1_max": 0.6605930442011902, "naucs_at_1_std": 0.45541776361368935, "naucs_at_1_diff1": 0.880836912844672, "naucs_at_3_max": 1.0, "naucs_at_3_std": 0.5401493930905577, "naucs_at_3_diff1": 0.8692810457516296, "naucs_at_5_max": 1.0, "naucs_at_5_std": 0.7222222222222276, "naucs_at_5_diff1": 0.8692810457516413, "naucs_at_10_max": 1.0, "naucs_at_10_std": 1.0, "naucs_at_10_diff1": 1.0, "naucs_at_20_max": 1.0, "naucs_at_20_std": 1.0, "naucs_at_20_diff1": 1.0, "naucs_at_50_max": NaN, "naucs_at_50_std": NaN, "naucs_at_50_diff1": NaN, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN}, "infovqa_subsampled": {"ndcg_at_1": 0.85, "ndcg_at_3": 0.88928, "ndcg_at_5": 0.89918, "ndcg_at_10": 0.90366, "ndcg_at_20": 0.90816, "ndcg_at_50": 0.9101, "ndcg_at_100": 0.91073, "map_at_1": 0.85, "map_at_3": 0.88, "map_at_5": 0.8855, "map_at_10": 0.88732, "map_at_20": 0.88853, "map_at_50": 0.88883, "map_at_100": 0.88887, "recall_at_1": 0.85, "recall_at_3": 0.916, "recall_at_5": 0.94, "recall_at_10": 0.954, "recall_at_20": 0.972, "recall_at_50": 0.982, "recall_at_100": 0.986, "precision_at_1": 0.85, "precision_at_3": 0.30533, "precision_at_5": 0.188, "precision_at_10": 0.0954, "precision_at_20": 0.0486, "precision_at_50": 0.01964, "precision_at_100": 0.00986, "mrr_at_1": 0.846, "mrr_at_3": 0.8786666666666666, "mrr_at_5": 0.8841666666666667, "mrr_at_10": 0.8859690476190476, "mrr_at_20": 0.8871696210222526, "mrr_at_50": 0.887457817094473, "mrr_at_100": 0.8875065832519349, "naucs_at_1_max": 0.6576374877969413, "naucs_at_1_std": 0.09139602993817167, "naucs_at_1_diff1": 0.9287341360234302, "naucs_at_3_max": 0.5740851896314072, "naucs_at_3_std": -0.0630919034280346, "naucs_at_3_diff1": 0.8925125605797886, "naucs_at_5_max": 0.8596327419856851, "naucs_at_5_std": 0.36778711484593446, "naucs_at_5_diff1": 0.8903672580143169, "naucs_at_10_max": 0.9162708561685533, "naucs_at_10_std": 0.6028498355864041, "naucs_at_10_diff1": 0.9102829537612158, "naucs_at_20_max": 0.9354741896758731, "naucs_at_20_std": 0.6860744297719135, "naucs_at_20_diff1": 0.9428104575163434, "naucs_at_50_max": 0.9709513435003653, "naucs_at_50_std": 0.8124805477746678, "naucs_at_50_diff1": 0.9564270152505423, "naucs_at_100_max": 0.9626517273576126, "naucs_at_100_std": 0.8382686407896341, "naucs_at_100_diff1": 0.9439775910364117}, "docvqa_subsampled": {"ndcg_at_1": 0.45, "ndcg_at_3": 0.5229, "ndcg_at_5": 0.54071, "ndcg_at_10": 0.56169, "ndcg_at_20": 0.57183, "ndcg_at_50": 0.58375, "ndcg_at_100": 0.5922, "map_at_1": 0.45, "map_at_3": 0.504, "map_at_5": 0.5137, "map_at_10": 0.52214, "map_at_20": 0.52493, "map_at_50": 0.52686, "map_at_100": 0.5276, "recall_at_1": 0.45, "recall_at_3": 0.578, "recall_at_5": 0.622, "recall_at_10": 0.688, "recall_at_20": 0.728, "recall_at_50": 0.788, "recall_at_100": 0.84, "precision_at_1": 0.45, "precision_at_3": 0.19267, "precision_at_5": 0.1244, "precision_at_10": 0.0688, "precision_at_20": 0.0364, "precision_at_50": 0.01576, "precision_at_100": 0.0084, "mrr_at_1": 0.452, "mrr_at_3": 0.5063333333333333, "mrr_at_5": 0.5163333333333334, "mrr_at_10": 0.5238119047619048, "mrr_at_20": 0.5271139985401595, "mrr_at_50": 0.5290200749111619, "mrr_at_100": 0.5299254540408582, "naucs_at_1_max": 0.5212021213906897, "naucs_at_1_std": 0.6806049891966216, "naucs_at_1_diff1": 0.8806495122110918, "naucs_at_3_max": 0.47156835207348163, "naucs_at_3_std": 0.8128002501903935, "naucs_at_3_diff1": 0.8088765466775932, "naucs_at_5_max": 0.4225936642138315, "naucs_at_5_std": 0.8492139709674136, "naucs_at_5_diff1": 0.8048344413805454, "naucs_at_10_max": 0.35700736285971163, "naucs_at_10_std": 0.8817867580935254, "naucs_at_10_diff1": 0.7719340152877696, "naucs_at_20_max": 0.28175167648851784, "naucs_at_20_std": 0.888878902036797, "naucs_at_20_diff1": 0.7607623528676154, "naucs_at_50_max": 0.23570044204275323, "naucs_at_50_std": 0.9034666462989657, "naucs_at_50_diff1": 0.7529716156996781, "naucs_at_100_max": 0.3394943544428075, "naucs_at_100_std": 0.9148932253313685, "naucs_at_100_diff1": 0.7261659302896408}, "arxivqa_subsampled": {"ndcg_at_1": 0.798, "ndcg_at_3": 0.85012, "ndcg_at_5": 0.86165, "ndcg_at_10": 0.86811, "ndcg_at_20": 0.87503, "ndcg_at_50": 0.88012, "ndcg_at_100": 0.88145, "map_at_1": 0.798, "map_at_3": 0.83767, "map_at_5": 0.84407, "map_at_10": 0.84672, "map_at_20": 0.84881, "map_at_50": 0.84959, "map_at_100": 0.84972, "recall_at_1": 0.798, "recall_at_3": 0.886, "recall_at_5": 0.914, "recall_at_10": 0.934, "recall_at_20": 0.96, "recall_at_50": 0.986, "recall_at_100": 0.994, "precision_at_1": 0.798, "precision_at_3": 0.29533, "precision_at_5": 0.1828, "precision_at_10": 0.0934, "precision_at_20": 0.048, "precision_at_50": 0.01972, "precision_at_100": 0.00994, "mrr_at_1": 0.796, "mrr_at_3": 0.837, "mrr_at_5": 0.8426, "mrr_at_10": 0.8454293650793651, "mrr_at_20": 0.8476594700621016, "mrr_at_50": 0.8484996653641844, "mrr_at_100": 0.8485908734354632, "naucs_at_1_max": 0.7429305020644663, "naucs_at_1_std": 0.12389279642324286, "naucs_at_1_diff1": 0.9221054092501996, "naucs_at_3_max": 0.7559059050726685, "naucs_at_3_std": 0.08804335159072413, "naucs_at_3_diff1": 0.9016514891704258, "naucs_at_5_max": 0.7771372114737365, "naucs_at_5_std": 0.08682387683755402, "naucs_at_5_diff1": 0.8953922654333033, "naucs_at_10_max": 0.7693036810683858, "naucs_at_10_std": 0.019508813626457466, "naucs_at_10_diff1": 0.9052853464618175, "naucs_at_20_max": 0.8720821661998126, "naucs_at_20_std": 0.4474089635854335, "naucs_at_20_diff1": 0.9319561157796447, "naucs_at_50_max": 0.8856209150326733, "naucs_at_50_std": 0.2575696945444932, "naucs_at_50_diff1": 1.0, "naucs_at_100_max": 0.9564270152505304, "naucs_at_100_std": 0.9564270152505304, "naucs_at_100_diff1": 1.0}, "tabfquad_subsampled": {"ndcg_at_1": 0.83214, "ndcg_at_3": 0.87712, "ndcg_at_5": 0.89235, "ndcg_at_10": 0.89806, "ndcg_at_20": 0.90534, "ndcg_at_50": 0.90678, "ndcg_at_100": 0.90738, "map_at_1": 0.83214, "map_at_3": 0.86667, "map_at_5": 0.87542, "map_at_10": 0.87773, "map_at_20": 0.87975, "map_at_50": 0.87999, "map_at_100": 0.88005, "recall_at_1": 0.83214, "recall_at_3": 0.90714, "recall_at_5": 0.94286, "recall_at_10": 0.96071, "recall_at_20": 0.98929, "recall_at_50": 0.99643, "recall_at_100": 1.0, "precision_at_1": 0.83214, "precision_at_3": 0.30238, "precision_at_5": 0.18857, "precision_at_10": 0.09607, "precision_at_20": 0.04946, "precision_at_50": 0.01993, "precision_at_100": 0.01, "mrr_at_1": 0.8285714285714286, "mrr_at_3": 0.8660714285714286, "mrr_at_5": 0.8739285714285714, "mrr_at_10": 0.8762386621315194, "mrr_at_20": 0.8782158477426059, "mrr_at_50": 0.8784424960942542, "mrr_at_100": 0.8785030287819054, "naucs_at_1_max": 0.4932986555362122, "naucs_at_1_std": 0.22308450615600825, "naucs_at_1_diff1": 0.8669798854793715, "naucs_at_3_max": 0.5318358112475757, "naucs_at_3_std": 0.22662141779788908, "naucs_at_3_diff1": 0.8142641672053457, "naucs_at_5_max": 0.5299077964519151, "naucs_at_5_std": 0.37307422969187604, "naucs_at_5_diff1": 0.7965102707749776, "naucs_at_10_max": 0.4598506069094349, "naucs_at_10_std": 0.4182582123758572, "naucs_at_10_diff1": 0.7816823699176663, "naucs_at_20_max": 0.6640211640211727, "naucs_at_20_std": 0.7424525365701908, "naucs_at_20_diff1": 0.807812013694365, "naucs_at_50_max": 0.8692810457515607, "naucs_at_50_std": 0.8692810457515607, "naucs_at_50_diff1": 0.5541549953314449, "naucs_at_100_max": 1.0, "naucs_at_100_std": 1.0, "naucs_at_100_diff1": 1.0}, "tatdqa": {"ndcg_at_1": 0.63139, "ndcg_at_3": 0.73814, "ndcg_at_5": 0.76197, "ndcg_at_10": 0.78059, "ndcg_at_20": 0.78639, "ndcg_at_50": 0.79151, "ndcg_at_100": 0.79287, "map_at_1": 0.63139, "map_at_3": 0.71277, "map_at_5": 0.72603, "map_at_10": 0.7338, "map_at_20": 0.73539, "map_at_50": 0.73626, "map_at_100": 0.73638, "recall_at_1": 0.63139, "recall_at_3": 0.81118, "recall_at_5": 0.86891, "recall_at_10": 0.92604, "recall_at_20": 0.94889, "recall_at_50": 0.97414, "recall_at_100": 0.98256, "precision_at_1": 0.63139, "precision_at_3": 0.27039, "precision_at_5": 0.17378, "precision_at_10": 0.0926, "precision_at_20": 0.04744, "precision_at_50": 0.01948, "precision_at_100": 0.00983, "mrr_at_1": 0.6301864101022249, "mrr_at_3": 0.7114652234916817, "mrr_at_5": 0.7254459811585489, "mrr_at_10": 0.7328489343221755, "mrr_at_20": 0.7346180226268433, "mrr_at_50": 0.7354215808563426, "mrr_at_100": 0.7355602372931767, "naucs_at_1_max": 0.15602344202646737, "naucs_at_1_std": -0.23537913065678764, "naucs_at_1_diff1": 0.7995887679987748, "naucs_at_3_max": 0.19948401483418163, "naucs_at_3_std": -0.17461182695422356, "naucs_at_3_diff1": 0.697068028325409, "naucs_at_5_max": 0.2702733206987723, "naucs_at_5_std": -0.07922361501648759, "naucs_at_5_diff1": 0.6924299266004303, "naucs_at_10_max": 0.362723107586991, "naucs_at_10_std": 0.16342176544180184, "naucs_at_10_diff1": 0.6704828732981863, "naucs_at_20_max": 0.44771077518715946, "naucs_at_20_std": 0.31862795330756494, "naucs_at_20_diff1": 0.6391884425916661, "naucs_at_50_max": 0.5273988645048515, "naucs_at_50_std": 0.6199789044521115, "naucs_at_50_diff1": 0.5861085850281988, "naucs_at_100_max": 0.5130808147698965, "naucs_at_100_std": 0.5869401169922615, "naucs_at_100_diff1": 0.5890188930623028}, "shift_project": {"ndcg_at_1": 0.73, "ndcg_at_3": 0.84702, "ndcg_at_5": 0.86293, "ndcg_at_10": 0.86942, "ndcg_at_20": 0.86942, "ndcg_at_50": 0.87131, "ndcg_at_100": 0.87131, "map_at_1": 0.73, "map_at_3": 0.81833, "map_at_5": 0.82683, "map_at_10": 0.82951, "map_at_20": 0.82951, "map_at_50": 0.82978, "map_at_100": 0.82978, "recall_at_1": 0.73, "recall_at_3": 0.93, "recall_at_5": 0.97, "recall_at_10": 0.99, "recall_at_20": 0.99, "recall_at_50": 1.0, "recall_at_100": 1.0, "precision_at_1": 0.73, "precision_at_3": 0.31, "precision_at_5": 0.194, "precision_at_10": 0.099, "precision_at_20": 0.0495, "precision_at_50": 0.02, "precision_at_100": 0.01, "mrr_at_1": 0.76, "mrr_at_3": 0.8383333333333333, "mrr_at_5": 0.8468333333333333, "mrr_at_10": 0.8497499999999999, "mrr_at_20": 0.8497499999999999, "mrr_at_50": 0.8500131578947367, "mrr_at_100": 0.8500131578947367, "naucs_at_1_max": -0.1763746092905308, "naucs_at_1_std": -0.39348129509131297, "naucs_at_1_diff1": 0.6756374216123774, "naucs_at_3_max": -0.018540749633185687, "naucs_at_3_std": -0.1494597839135643, "naucs_at_3_diff1": 0.5246098439375775, "naucs_at_5_max": -0.20572673513849474, "naucs_at_5_std": -0.4344849050731363, "naucs_at_5_diff1": 0.7152194211017747, "naucs_at_10_max": -1.7399626517273863, "naucs_at_10_std": -1.7399626517273863, "naucs_at_10_diff1": 0.8692810457516413, "naucs_at_20_max": -1.7399626517273863, "naucs_at_20_std": -1.7399626517273863, "naucs_at_20_diff1": 0.8692810457516413, "naucs_at_50_max": NaN, "naucs_at_50_std": NaN, "naucs_at_50_diff1": NaN, "naucs_at_100_max": NaN, "naucs_at_100_std": NaN, "naucs_at_100_diff1": NaN}}
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88a3a6fcb80132f76da8aa40cdc3fccd7e5d8468ef15421f5b0c2715e85217d2
3
+ size 11420538
tokenizer_config.json ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<|object_ref_start|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<|object_ref_end|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<|box_start|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<|box_end|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<|quad_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151651": {
69
+ "content": "<|quad_end|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151652": {
77
+ "content": "<|vision_start|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151653": {
85
+ "content": "<|vision_end|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151654": {
93
+ "content": "<|vision_pad|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151655": {
101
+ "content": "<|image_pad|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151656": {
109
+ "content": "<|video_pad|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ }
116
+ },
117
+ "additional_special_tokens": [
118
+ "<|im_start|>",
119
+ "<|im_end|>",
120
+ "<|object_ref_start|>",
121
+ "<|object_ref_end|>",
122
+ "<|box_start|>",
123
+ "<|box_end|>",
124
+ "<|quad_start|>",
125
+ "<|quad_end|>",
126
+ "<|vision_start|>",
127
+ "<|vision_end|>",
128
+ "<|vision_pad|>",
129
+ "<|image_pad|>",
130
+ "<|video_pad|>"
131
+ ],
132
+ "bos_token": null,
133
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
134
+ "clean_up_tokenization_spaces": false,
135
+ "eos_token": "<|im_end|>",
136
+ "errors": "replace",
137
+ "model_max_length": 32768,
138
+ "pad_token": "<|endoftext|>",
139
+ "padding_side": "left",
140
+ "processor_class": "ColQwen2Processor",
141
+ "split_special_tokens": false,
142
+ "tokenizer_class": "Qwen2Tokenizer",
143
+ "unk_token": null
144
+ }
training_config.yml ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ config:
2
+ (): colpali_engine.trainer.colmodel_training.ColModelTrainingConfig
3
+ output_dir: !path ../../../models/colqwen2-ba16 # ba4-highres
4
+ processor:
5
+ (): colpali_engine.utils.transformers_wrappers.AllPurposeWrapper
6
+ class_to_instanciate: !ext colpali_engine.models.ColQwen2Processor
7
+ pretrained_model_name_or_path: "./models/colqwen2_base" # "./models/paligemma-3b-mix-448"
8
+ # num_image_tokens: 2048
9
+ # max_length: 50
10
+
11
+ model:
12
+ (): colpali_engine.utils.transformers_wrappers.AllPurposeWrapper
13
+ class_to_instanciate: !ext colpali_engine.models.ColQwen2
14
+ pretrained_model_name_or_path: "./models/colqwen2_base"
15
+ torch_dtype: !ext torch.bfloat16
16
+ use_cache: false
17
+ attn_implementation: "flash_attention_2"
18
+ # device_map: "auto"
19
+ # quantization_config:
20
+ # (): transformers.BitsAndBytesConfig
21
+ # load_in_4bit: true
22
+ # bnb_4bit_quant_type: "nf4"
23
+ # bnb_4bit_compute_dtype: "bfloat16"
24
+ # bnb_4bit_use_double_quant: true
25
+
26
+ dataset_loading_func: !ext colpali_engine.utils.dataset_transformation.load_train_set
27
+ eval_dataset_loader: !import ../data/test_data.yaml
28
+
29
+ # max_length: 50
30
+ run_eval: true
31
+ add_suffix: true
32
+ loss_func:
33
+ (): colpali_engine.loss.late_interaction_losses.ColbertPairwiseCELoss
34
+ tr_args:
35
+ (): transformers.training_args.TrainingArguments
36
+ output_dir: null
37
+ overwrite_output_dir: true
38
+ num_train_epochs: 1
39
+ per_device_train_batch_size: 16
40
+ # 6 x 8 gpus = 48 batch size
41
+ # gradient_accumulation_steps: 4
42
+ per_device_eval_batch_size: 4
43
+ eval_strategy: "steps"
44
+ # dataloader_num_workers: 8
45
+ # bf16: true
46
+ save_steps: 500
47
+ logging_steps: 10
48
+ eval_steps: 100
49
+ warmup_steps: 250
50
+ learning_rate: 5e-5
51
+ save_total_limit: 1
52
+ # resume_from_checkpoint: true
53
+ # optim: "paged_adamw_8bit"
54
+
55
+ peft_config:
56
+ (): peft.LoraConfig
57
+ r: 32
58
+ lora_alpha: 32
59
+ lora_dropout: 0.1
60
+ init_lora_weights: "gaussian"
61
+ bias: "none"
62
+ task_type: "FEATURE_EXTRACTION"
63
+ target_modules: '(.*(model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)'
64
+ # target_modules: '(.*(language_model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)'
65
+
vocab.json ADDED
The diff for this file is too large to render. See raw diff