marco commited on
Commit
e826da9
ยท
verified ยท
1 Parent(s): 0cdfe58

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +201 -0
README.md CHANGED
@@ -1,3 +1,204 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - en
5
+ - it
6
+ - fr
7
+ - de
8
+ - es
9
+ base_model:
10
+ - MrLight/dse-qwen2-2b-mrl-v1
11
  ---
12
+
13
+ # mcdse-2b-v1
14
+
15
+ ![](cover.png)
16
+
17
+ mcdse-2b-v1 is an experimental model designed for multilingual visual document retrieval.
18
+
19
+ This model allows you to embed page/slide screenshots and query them using natural language. Whether it's tables, graphs, charts, schemas, images, or text, mcdse-2b-v1 encodes everything into a single embedding vector, eliminating the need for traditional OCR, document layout analysis, reading order detection, chunking, table/formula extraction...
20
+
21
+ - **Understands ๐Ÿ‡ฎ๐Ÿ‡น Italian, ๐Ÿ‡ช๐Ÿ‡ธ Spanish, ๐Ÿ‡ฌ๐Ÿ‡ง English, ๐Ÿ‡ซ๐Ÿ‡ท French and ๐Ÿ‡ฉ๐Ÿ‡ช German**
22
+
23
+ - **Matryoshka Representation Learning:** shrink embeddings from 1536 to 256 dimensions while maintaining 95% of the quality. A 6x reduction with negligible impact on performance!
24
+
25
+ - **Top-tier Binarization**: 768-dimensional binary vectors retain 99% retrieval quality of the original 1536-dimensional float vectors. With binary vectors, you can encode **100 million multilingual pages in just 10GB**.
26
+
27
+ - **Fast vLLM inference:** run inference on vLLM and efficiently serve embeddings at scale, production ready.
28
+
29
+ For more information about this model or how it was trained, visit the [announcement blogpost](https://huggingface.co/blog/marco/announcing-mcdse-2b-v1).
30
+
31
+ ## Usage
32
+
33
+ **Initialize model and processor**
34
+ ```python
35
+ from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
36
+ from PIL import Image
37
+ import torch
38
+ import math
39
+
40
+ model = Qwen2VLForConditionalGeneration.from_pretrained(
41
+ 'marco/mcdse-2b-v1',
42
+ attn_implementation="flash_attention_2",
43
+ torch_dtype=torch.bfloat16,
44
+ device_map="cuda:0"
45
+ ).eval()
46
+
47
+ min_pixels = 1 * 28 * 28
48
+ max_pixels = 960 * 28 * 28
49
+
50
+ processor = AutoProcessor.from_pretrained(
51
+ 'marco/mcdse-2b-v1',
52
+ min_pixels=min_pixels,
53
+ max_pixels=max_pixels
54
+ )
55
+
56
+ model.padding_side = "left"
57
+ processor.tokenizer.padding_side = "left"
58
+
59
+ document_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>"
60
+
61
+ query_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>"
62
+ ```
63
+
64
+ **Encode queries**
65
+ ```python
66
+ def encode_queries(queries: list[str], dimension: int):
67
+ dummy_image = Image.new('RGB', (56, 56))
68
+ inputs = processor(
69
+ text=[query_prompt % x for x in queries],
70
+ images=[dummy_image for _ in queries],
71
+ videos=None,
72
+ padding='longest',
73
+ return_tensors='pt'
74
+ ).to('cuda:0')
75
+
76
+ cache_position = torch.arange(0, len(queries))
77
+ inputs = model.prepare_inputs_for_generation(
78
+ **inputs, cache_position=cache_position, use_cache=False)
79
+
80
+ with torch.no_grad():
81
+ output = self.model(
82
+ **inputs,
83
+ return_dict=True,
84
+ output_hidden_states=True
85
+ )
86
+
87
+ embeddings = output.hidden_states[-1][:, -1]
88
+ return torch.nn.functional.normalize(embeddings[:, :dimension], p=2, dim=-1)
89
+ ```
90
+
91
+ **Encode documents**
92
+ ```python
93
+ def round_by_factor(number: float, factor: int) -> int:
94
+ return round(number / factor) * factor
95
+
96
+ def ceil_by_factor(number: float, factor: int) -> int:
97
+ return math.ceil(number / factor) * factor
98
+
99
+ def floor_by_factor(number: float, factor: int) -> int:
100
+ return math.floor(number / factor) * factor
101
+
102
+ def smart_resize(height: int, width: int) -> tuple[int, int]:
103
+ h_bar = max(28, round_by_factor(height, 28))
104
+ w_bar = max(28, round_by_factor(width, 28))
105
+ if h_bar * w_bar > max_pixels:
106
+ beta = math.sqrt((height * width) / max_pixels)
107
+ h_bar = floor_by_factor(height / beta, 28)
108
+ w_bar = floor_by_factor(width / beta, 28)
109
+ elif h_bar * w_bar < min_pixels:
110
+ beta = math.sqrt(min_pixels / (height * width))
111
+ h_bar = ceil_by_factor(height * beta, 28)
112
+ w_bar = ceil_by_factor(width * beta, 28)
113
+ return h_bar, w_bar
114
+
115
+ def resize(image: Image.Image):
116
+ new_size = smart_resize(image.height, image.width)
117
+ return image.resize(new_size)
118
+
119
+ def encode_documents(documents: list[Image.Image], dimension: int):
120
+ inputs = processor(
121
+ text=[document_prompt] * len(documents),
122
+ images=[resize(x) for x in documents],
123
+ videos=None,
124
+ padding='longest',
125
+ return_tensors='pt'
126
+ ).to('cuda:0')
127
+
128
+ cache_position = torch.arange(0, len(queries))
129
+ inputs = model.prepare_inputs_for_generation(
130
+ **inputs, cache_position=cache_position, use_cache=False)
131
+
132
+ with torch.no_grad():
133
+ output = self.model(
134
+ **inputs,
135
+ return_dict=True,
136
+ output_hidden_states=True
137
+ )
138
+
139
+ embeddings = output.hidden_states[-1][:, -1]
140
+ return torch.nn.functional.normalize(embeddings[:, :dimension], p=2, dim=-1)
141
+ ```
142
+
143
+ ### vLLM
144
+ This model supports vLLM, visit the [announcement blogpost](https://huggingface.co/blog/marco/announcing-mcdse-2b-v1#deployment) to know more.
145
+
146
+ ## Results
147
+ Given the scarcity of publicly available datasets for multilingual document image retrieval, the model has been evaluated using a custom-built dataset. This eval dataset was specifically designed to benchmark the model's performance across various languages.
148
+
149
+ ### NDCG@5 (float)
150
+ | | Average | English | Italian | Spanish | French | German |
151
+ |---------------------|------------|------------|------------|------------|------------|------------|
152
+ | **1536 dimensions** | | | | | | |
153
+ | dse-qwen2-2b-mrl-v1 | 79.5 | 79.2 | 80.2 | 77.9 | 80.6 | 79.6 |
154
+ | mcdse-2b-v1 | **82.2** | **80.8** | **81.2** | **80.7** | **84.5** | **83.8** |
155
+ | | **+3.28%** | **+1.98%** | **+1.23%** | **+3.47%** | **+4.62%** | **+5.01%** |
156
+ | **1024 dimensions** | | | | | | |
157
+ | dse-qwen2-2b-mrl-v1 | 78.3 | 78.8 | 78.5 | 76.5 | 80 | 77.5 |
158
+ | mcdse-2b-v1 | **81.7** | **80** | **80.2** | **80.1** | **84** | **84.3** |
159
+ | | **+4.23%** | **+1.75%** | **+2.12%** | **+4.49%** | **+4.76%** | **+8.07%** |
160
+ | **768 dimensions** | | | | | | |
161
+ | dse-qwen2-2b-mrl-v1 | 77.8 | 78.4 | 78.3 | 75.6 | 80.8 | 75.9 |
162
+ | mcdse-2b-v1 | **81.1** | **79.6** | **79.9** | **79.2** | **83.3** | **83.3** |
163
+ | | **+4.02%** | **+1.51%** | **+2.00%** | **+4.55%** | **+3.00%** | **+8.88%** |
164
+ | **512 dimensions** | | | | | | |
165
+ | dse-qwen2-2b-mrl-v1 | 76.2 | 77.6 | 75.9 | 73.1 | 79.2 | 75.2 |
166
+ | mcdse-2b-v1 | **79.3** | **78.5** | **79.1** | **75.8** | **81.4** | **81.7** |
167
+ | | **+3.91%** | **+1.15%** | **+4.05%** | **+3.56%** | **+2.70%** | **+7.96%** |
168
+ | **384 dimensions** | | | | | | |
169
+ | dse-qwen2-2b-mrl-v1 | 75.7 | 76.2 | 75.5 | 74.6 | 78.4 | 74 |
170
+ | mcdse-2b-v1 | **78.8** | **77.5** | **78.5** | **76.1** | **80.4** | **81.4** |
171
+ | | **+3.86%** | **+1.68%** | **+3.82%** | **+1.97%** | **+2.49%** | **+9.09%** |
172
+ | **256 dimensions** | | | | | | |
173
+ | dse-qwen2-2b-mrl-v1 | 73.5 | 74.5 | 73.6 | 70.6 | 74.8 | 73.8 |
174
+ | mcdse-2b-v1 | **78.1** | **78.5** | **77.6** | **76.2** | **80.1** | **77.9** |
175
+ | | **+5.89%** | **+5.10%** | **+5.15%** | **+7.35%** | **+6.62%** | **+5.26%** |
176
+
177
+ ### NDCG@5 (binary)
178
+ | | Average | English | Italian | Spanish | French | German |
179
+ |---------------------|-------------|-------------|-------------|-------------|-------------|-------------|
180
+ | **1536 dimensions** | | | | | | |
181
+ | dse-qwen2-2b-mrl-v1 | 75.0 | 75.8 | 75.4 | 72.4 | 78.1 | 73.2 |
182
+ | mcdse-2b-v1 | **80.6** | **79.5** | **76.9** | **81.9** | **83.7** | **80.8** |
183
+ | | **+6.93%** | **+4.65%** | **+1.95%** | **+11.60%** | **+6.69%** | **+9.41%** |
184
+ | **1024 dimensions** | | | | | | |
185
+ | dse-qwen2-2b-mrl-v1 | 72.2 | 74.8 | 71 | 70.8 | 74.6 | 69.6 |
186
+ | mcdse-2b-v1 | **79.3** | **78.4** | **75.4** | **80.8** | **82.6** | **79.5** |
187
+ | | **+9.05%** | **+4.59%** | **+5.84%** | **+12.38%** | **+9.69%** | **+12.45%** |
188
+ | **768 dimensions** | | | | | | |
189
+ | dse-qwen2-2b-mrl-v1 | 70.1 | 71.7 | 69.3 | 69.8 | 73.7 | 65.9 |
190
+ | mcdse-2b-v1 | **78.8** | **77.1** | **75.4** | **80** | **83** | **78.5** |
191
+ | | **+11.07%** | **+7.00%** | **+8.09%** | **+12.75%** | **+11.20%** | **+16.05%** |
192
+ | **512 dimensions** | | | | | | |
193
+ | dse-qwen2-2b-mrl-v1 | 66.5 | 70 | 65.4 | 63.7 | 70.2 | 63 |
194
+ | mcdse-2b-v1 | **76.6** | **74.8** | **74.2** | **77.7** | **80.9** | **75.3** |
195
+ | | **+13.21%** | **+6.42%** | **+11.86%** | **+18.02%** | **+13.23%** | **+16.33%** |
196
+ | **384 dimensions** | | | | | | |
197
+ | dse-qwen2-2b-mrl-v1 | 61.1 | 62.7 | 58.5 | 58.6 | 65.1 | 60.8 |
198
+ | mcdse-2b-v1 | **74.3** | **74.5** | **71.4** | **77.2** | **75.2** | **73** |
199
+ | | **+17.67%** | **+15.84%** | **+18.07%** | **+24.09%** | **+13.43%** | **+16.71%** |
200
+ | **256 dimensions** | | | | | | |
201
+ | dse-qwen2-2b-mrl-v1 | 54.3 | 59 | 56.5 | 53.6 | 53 | 49.6 |
202
+ | mcdse-2b-v1 | **70.9** | **72.6** | **66.4** | **73.5** | **72.6** | **69.2** |
203
+ | | **+23.31%** | **+18.73%** | **+14.91%** | **+27.07%** | **+27.00%** | **+28.32%** |
204
+