--- license: other library_name: peft tags: - axolotl - generated_from_trainer base_model: Qwen/Qwen1.5-0.5B-Chat model-index: - name: Qwen1.5-Capybara-0.5B-Chat results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: Qwen/Qwen1.5-0.5B-Chat model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer hub_model_id: markab/Qwen1.5-Capybara-0.5B-Chat # https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy hub_strategy: every_save # Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets # Required to be true when used in combination with `push_dataset_to_hub` hf_use_auth_token: true # boolean trust_remote_code: load_in_8bit: true load_in_4bit: false strict: false datasets: - path: cfahlgren1/Capybara-Converted type: sharegpt conversation: chatml field_system: system field_human: human field_model: gpt - path: markab/coqa_qa_multi type: sharegpt conversation: chatml field_system: system field_human: human field_model: gpt chat_template: chatml dataset_prepared_path: last_run_prepared val_set_size: 0.01 output_dir: ./out sequence_len: 4000 sample_packing: false pad_to_sequence_len: false #device_map: sequential #max_memory: {0: "8GB", 1: "8GB", 2: "14GB"} adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 32 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: qwen-capybara wandb_entity: wandb_watch: wandb_name: Qwen1.5-Capybara-0.5B-Chat wandb_log_model: checkpoint gradient_accumulation_steps: 2 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine cosine_min_lr_ratio: 0.1 learning_rate: 0.00022 save_safetensors: true train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 15 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# Qwen1.5-Capybara-0.5B-Chat This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B-Chat](https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0419 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00022 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 15 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.164 | 0.0 | 1 | 1.2662 | | 0.759 | 0.25 | 343 | 1.0705 | | 0.6798 | 0.5 | 686 | 1.0525 | | 1.2828 | 0.75 | 1029 | 1.0419 | ### Framework versions - PEFT 0.9.1.dev0 - Transformers 4.39.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.0 ### Benchmark (MMLU) ``` Average: 33.35 STEM: 32.20 Social Sciences: 37.00 Humanities: 31.71 Other: 33.33 ```