leoxiaobin Xenova HF staff commited on
Commit
484465f
·
verified ·
1 Parent(s): aec3bc5

Fix modeling code (typos/bugs) (#12)

Browse files

- Fix modeling code (typos/bugs) (5554f70f9adfefb797a9965c11e8bf539eeca585)
- Remove unnecessary deletion (f0a0996b38848cb40f47db06d4735652bbd7af4d)


Co-authored-by: Joshua <[email protected]>

Files changed (1) hide show
  1. modeling_florence2.py +9 -3
modeling_florence2.py CHANGED
@@ -2240,6 +2240,10 @@ class Florence2Seq2SeqLMOutput(ModelOutput):
2240
  decoding.
2241
 
2242
  Args:
 
 
 
 
2243
  last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
2244
  Sequence of hidden-states at the output of the last layer of the decoder of the model.
2245
 
@@ -2288,7 +2292,8 @@ class Florence2Seq2SeqLMOutput(ModelOutput):
2288
 
2289
  image_hidden_states of the model produced by the vision encoder
2290
  """
2291
-
 
2292
  last_hidden_state: torch.FloatTensor = None
2293
  past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
2294
  decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@@ -2297,6 +2302,7 @@ class Florence2Seq2SeqLMOutput(ModelOutput):
2297
  encoder_last_hidden_state: Optional[torch.FloatTensor] = None
2298
  encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
2299
  encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
 
2300
 
2301
 
2302
  FLORENCE2_START_DOCSTRING = r"""
@@ -2527,7 +2533,6 @@ class Florence2ForConditionalGeneration(Florence2PreTrainedModel):
2527
  def __init__(self, config: Florence2Config):
2528
  super().__init__(config)
2529
  assert config.vision_config.model_type == 'davit', 'only DaViT is supported for now'
2530
- del config.vision_config.model_type
2531
  self.vision_tower = DaViT.from_config(config=config.vision_config)
2532
  # remove unused layers
2533
  del self.vision_tower.head
@@ -2731,7 +2736,8 @@ class Florence2ForConditionalGeneration(Florence2PreTrainedModel):
2731
  image_features = self._encode_image(pixel_values)
2732
  inputs_embeds, attention_mask = self._merge_input_ids_with_image_features(image_features, inputs_embeds)
2733
 
2734
- attention_mask = attention_mask.to(inputs_embeds.dtype)
 
2735
  outputs = self.language_model(
2736
  attention_mask=attention_mask,
2737
  labels=labels,
 
2240
  decoding.
2241
 
2242
  Args:
2243
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
2244
+ Language modeling loss.
2245
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
2246
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
2247
  last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
2248
  Sequence of hidden-states at the output of the last layer of the decoder of the model.
2249
 
 
2292
 
2293
  image_hidden_states of the model produced by the vision encoder
2294
  """
2295
+ loss: Optional[torch.FloatTensor] = None
2296
+ logits: torch.FloatTensor = None
2297
  last_hidden_state: torch.FloatTensor = None
2298
  past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
2299
  decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
 
2302
  encoder_last_hidden_state: Optional[torch.FloatTensor] = None
2303
  encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
2304
  encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
2305
+ image_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
2306
 
2307
 
2308
  FLORENCE2_START_DOCSTRING = r"""
 
2533
  def __init__(self, config: Florence2Config):
2534
  super().__init__(config)
2535
  assert config.vision_config.model_type == 'davit', 'only DaViT is supported for now'
 
2536
  self.vision_tower = DaViT.from_config(config=config.vision_config)
2537
  # remove unused layers
2538
  del self.vision_tower.head
 
2736
  image_features = self._encode_image(pixel_values)
2737
  inputs_embeds, attention_mask = self._merge_input_ids_with_image_features(image_features, inputs_embeds)
2738
 
2739
+ if inputs_embeds is not None:
2740
+ attention_mask = attention_mask.to(inputs_embeds.dtype)
2741
  outputs = self.language_model(
2742
  attention_mask=attention_mask,
2743
  labels=labels,