|
import re |
|
import torch |
|
import requests |
|
from PIL import Image, ImageDraw |
|
from transformers import AutoProcessor, Kosmos2_5ForConditionalGeneration |
|
|
|
repo = "microsoft/kosmos-2.5" |
|
device = "cuda:0" |
|
dtype = torch.bfloat16 |
|
model = Kosmos2_5ForConditionalGeneration.from_pretrained(repo, device_map=device, torch_dtype=dtype) |
|
processor = AutoProcessor.from_pretrained(repo) |
|
|
|
|
|
url = "https://huggingface.co/microsoft/kosmos-2.5/blob/main/receipt_00008.png" |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
|
|
prompt = "<ocr>" |
|
inputs = processor(text=prompt, images=image, return_tensors="pt") |
|
height, width = inputs.pop("height"), inputs.pop("width") |
|
raw_width, raw_height = image.size |
|
scale_height = raw_height / height |
|
scale_width = raw_width / width |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inputs = {k: v.to(device) if v is not None else None for k, v in inputs.items()} |
|
inputs["flattened_patches"] = inputs["flattened_patches"].to(dtype) |
|
generated_ids = model.generate( |
|
**inputs, |
|
max_new_tokens=1024, |
|
) |
|
|
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) |
|
def post_process(y, scale_height, scale_width): |
|
y = y.replace(prompt, "") |
|
if "<md>" in prompt: |
|
return y |
|
pattern = r"<bbox><x_\d+><y_\d+><x_\d+><y_\d+></bbox>" |
|
bboxs_raw = re.findall(pattern, y) |
|
lines = re.split(pattern, y)[1:] |
|
bboxs = [re.findall(r"\d+", i) for i in bboxs_raw] |
|
bboxs = [[int(j) for j in i] for i in bboxs] |
|
info = "" |
|
for i in range(len(lines)): |
|
box = bboxs[i] |
|
x0, y0, x1, y1 = box |
|
if not (x0 >= x1 or y0 >= y1): |
|
x0 = int(x0 * scale_width) |
|
y0 = int(y0 * scale_height) |
|
x1 = int(x1 * scale_width) |
|
y1 = int(y1 * scale_height) |
|
info += f"{x0},{y0},{x1},{y0},{x1},{y1},{x0},{y1},{lines[i]}" |
|
return info |
|
|
|
output_text = post_process(generated_text[0], scale_height, scale_width) |
|
print(output_text) |
|
|
|
draw = ImageDraw.Draw(image) |
|
lines = output_text.split("\n") |
|
for line in lines: |
|
|
|
line = list(line.split(",")) |
|
if len(line) < 8: |
|
continue |
|
line = list(map(int, line[:8])) |
|
draw.polygon(line, outline="red") |
|
image.save("output.png") |