nielsr HF staff commited on
Commit
b2e547a
·
verified ·
1 Parent(s): cb5cacc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -0
README.md CHANGED
@@ -27,15 +27,21 @@ from transformers import AutoProcessor, UdopForConditionalGeneration
27
  from datasets import load_dataset
28
 
29
  # load model and processor
 
 
30
  processor = AutoProcessor.from_pretrained("microsoft/udop-large", apply_ocr=False)
31
  model = UdopForConditionalGeneration.from_pretrained("microsoft/udop-large")
32
 
 
 
33
  dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train")
34
  example = dataset[0]
35
  image = example["image"]
36
  words = example["tokens"]
37
  boxes = example["bboxes"]
38
  question = "Question answering. What is the date on the form?"
 
 
39
  encoding = processor(image, question, words, boxes=boxes, return_tensors="pt")
40
 
41
  # autoregressive generation
 
27
  from datasets import load_dataset
28
 
29
  # load model and processor
30
+ # in this case, we already have performed OCR ourselves
31
+ # so we initialize the processor with `apply_ocr=False`
32
  processor = AutoProcessor.from_pretrained("microsoft/udop-large", apply_ocr=False)
33
  model = UdopForConditionalGeneration.from_pretrained("microsoft/udop-large")
34
 
35
+ # load an example image, along with the words and coordinates
36
+ # which were extracted using an OCR engine
37
  dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train")
38
  example = dataset[0]
39
  image = example["image"]
40
  words = example["tokens"]
41
  boxes = example["bboxes"]
42
  question = "Question answering. What is the date on the form?"
43
+
44
+ # prepare everything for the model
45
  encoding = processor(image, question, words, boxes=boxes, return_tensors="pt")
46
 
47
  # autoregressive generation