Update README.md
Browse files
README.md
CHANGED
@@ -27,15 +27,21 @@ from transformers import AutoProcessor, UdopForConditionalGeneration
|
|
27 |
from datasets import load_dataset
|
28 |
|
29 |
# load model and processor
|
|
|
|
|
30 |
processor = AutoProcessor.from_pretrained("microsoft/udop-large", apply_ocr=False)
|
31 |
model = UdopForConditionalGeneration.from_pretrained("microsoft/udop-large")
|
32 |
|
|
|
|
|
33 |
dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train")
|
34 |
example = dataset[0]
|
35 |
image = example["image"]
|
36 |
words = example["tokens"]
|
37 |
boxes = example["bboxes"]
|
38 |
question = "Question answering. What is the date on the form?"
|
|
|
|
|
39 |
encoding = processor(image, question, words, boxes=boxes, return_tensors="pt")
|
40 |
|
41 |
# autoregressive generation
|
|
|
27 |
from datasets import load_dataset
|
28 |
|
29 |
# load model and processor
|
30 |
+
# in this case, we already have performed OCR ourselves
|
31 |
+
# so we initialize the processor with `apply_ocr=False`
|
32 |
processor = AutoProcessor.from_pretrained("microsoft/udop-large", apply_ocr=False)
|
33 |
model = UdopForConditionalGeneration.from_pretrained("microsoft/udop-large")
|
34 |
|
35 |
+
# load an example image, along with the words and coordinates
|
36 |
+
# which were extracted using an OCR engine
|
37 |
dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train")
|
38 |
example = dataset[0]
|
39 |
image = example["image"]
|
40 |
words = example["tokens"]
|
41 |
boxes = example["bboxes"]
|
42 |
question = "Question answering. What is the date on the form?"
|
43 |
+
|
44 |
+
# prepare everything for the model
|
45 |
encoding = processor(image, question, words, boxes=boxes, return_tensors="pt")
|
46 |
|
47 |
# autoregressive generation
|