File size: 8,249 Bytes
68ff49c 52e40d4 68ff49c 36319b8 68ff49c 33f76dd 6afe488 68ff49c 6afe488 53c6128 33f76dd 68ff49c c21a08b 4079cdf c21a08b 68ff49c 2692262 a486a79 5fb2359 a486a79 5fb2359 6afe488 5bcde36 6afe488 68ff49c 6afe488 53c6128 68ff49c 53c6128 68ff49c 36319b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
---
license: cc-by-nc-4.0
tags:
- merge
- mergekit
- lazymergekit
- dpo
- rlhf
base_model: mlabonne/Beagle14-7B
model-index:
- name: NeuralBeagle14-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 72.95
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralBeagle14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.34
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralBeagle14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.55
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralBeagle14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 69.93
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralBeagle14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.4
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralBeagle14-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.28
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralBeagle14-7B
name: Open LLM Leaderboard
---
![](https://i.imgur.com/89ZAKcn.png)
# πΆ NeuralBeagle14-7B
**Update 01/16/24: NeuralBeagle14-7B is (probably) the best 7B model you can find! π**
NeuralBeagle14-7B is a DPO fine-tune of [mlabonne/Beagle14-7B](https://huggingface.co/mlabonne/Beagle14-7B) using the [argilla/distilabel-intel-orca-dpo-pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs) preference dataset and my DPO notebook from [this article](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac).
It is based on a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [fblgit/UNA-TheBeagle-7b-v1](https://huggingface.co/fblgit/UNA-TheBeagle-7b-v1), based on jondurbin's [repo](https://github.com/jondurbin/bagel) and [jondurbin/bagel-v0.3](https://huggingface.co/datasets/jondurbin/bagel-v0.3])
* [argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp), based on [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp)
Thanks [Argilla](https://huggingface.co/argilla) for providing the dataset and the training recipe [here](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp). πͺ
You can try it out in this [Space](https://huggingface.co/spaces/mlabonne/NeuralBeagle14-7B-GGUF-Chat) (GGUF Q4_K_M).
## π Applications
This model uses a context window of 8k. It is compatible with different templates, like chatml and Llama's chat template.
Compared to other 7B models, it displays good performance in instruction following and reasoning tasks. It can also be used for RP and storytelling.
## β‘ Quantized models
* **GGUF**: https://huggingface.co/mlabonne/NeuralBeagle14-7B-GGUF
* **GPTQ**: https://huggingface.co/TheBloke/NeuralBeagle14-7B-GPTQ
* **AWQ**: https://huggingface.co/TheBloke/NeuralBeagle14-7B-AWQ
* **EXL2**: https://huggingface.co/LoneStriker/NeuralBeagle14-7B-8.0bpw-h8-exl2
## π Evaluation
### Open LLM Leaderboard
NeuralBeagle14-7B ranks first on the Open LLM Leaderboard in the ~7B category.
![](https://i.imgur.com/4nAzJsr.png)
It has the same average score as Beagle14-7B ("Show merges"), which could be due to might be due to an unlucky run.
I think I might be overexploiting argilla/distilabel-intel-orca-dpo-pairs at this point, since this dataset or its original version are present in multiple models.
I need to find more high-quality preference data for the next DPO merge.
Note that some models like udkai/Turdus and nfaheem/Marcoroni-7b-DPO-Merge are unfortunately contaminated on purpose (see the very high Winogrande score).
### Nous
The evaluation was performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval) on Nous suite. It is the best 7B model to date.
| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
|---|---:|---:|---:|---:|---:|
| [**mlabonne/NeuralBeagle14-7B**](https://huggingface.co/mlabonne/NeuralBeagle14-7B) [π](https://gist.github.com/mlabonne/ad0c665bbe581c8420136c3b52b3c15c) | **60.25** | **46.06** | **76.77** | **70.32** | **47.86** |
| [mlabonne/Beagle14-7B](https://huggingface.co/mlabonne/Beagle14-7B) [π](https://gist.github.com/mlabonne/f5a5bf8c0827bbec2f05b97cc62d642c) | 59.4 | 44.38 | 76.53 | 69.44 | 47.25 |
| [mlabonne/NeuralDaredevil-7B](https://huggingface.co/mlabonne/NeuralDaredevil-7B) [π](https://gist.github.com/mlabonne/cbeb077d1df71cb81c78f742f19f4155) | 59.39 | 45.23 | 76.2 | 67.61 | 48.52 |
| [argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp) [π](https://gist.github.com/mlabonne/9082c4e59f4d3f3543c5eda3f4807040) | 58.93 | 45.38 | 76.48 | 65.68 | 48.18 |
| [mlabonne/NeuralMarcoro14-7B](https://huggingface.co/mlabonne/NeuralMarcoro14-7B) [π](https://gist.github.com/mlabonne/b31572a4711c945a4827e7242cfc4b9d) | 58.4 | 44.59 | 76.17 | 65.94 | 46.9 |
| [openchat/openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) [π](https://gist.github.com/mlabonne/1afab87b543b0717ec08722cf086dcc3) | 53.71 | 44.17 | 73.72 | 52.53 | 44.4 |
| [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) [π](https://gist.github.com/mlabonne/88b21dd9698ffed75d6163ebdc2f6cc8) | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 |
You can find the complete benchmark on [YALL - Yet Another LLM Leaderboard](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).
## π» Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/NeuralBeagle14-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
<p align="center">
<a href="https://github.com/argilla-io/distilabel">
<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
</a>
</p>
|