File size: 2,003 Bytes
219d6b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- unsloth
- generated_from_trainer
base_model: unsloth/mistral-7b-instruct-v0.2-bnb-4bit
metrics:
- rouge
model-index:
- name: mistral_numericnlg_FV
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mistral_numericnlg_FV

This model is a fine-tuned version of [unsloth/mistral-7b-instruct-v0.2-bnb-4bit](https://huggingface.co/unsloth/mistral-7b-instruct-v0.2-bnb-4bit) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2038
- Rouge1: 0.6650
- Rougel: 0.5559

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 1
- seed: 3407
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- num_epochs: 6
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rouge1 | Rougel |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
| 1.3723        | 0.9446 | 16   | 1.3128          | 0.6406 | 0.5251 |
| 1.2226        | 1.9483 | 33   | 1.2305          | 0.6603 | 0.5562 |
| 1.1781        | 2.9520 | 50   | 1.2129          | 0.6658 | 0.5556 |
| 1.2057        | 3.9557 | 67   | 1.2062          | 0.6659 | 0.5560 |
| 1.215         | 4.9594 | 84   | 1.2040          | 0.6656 | 0.5551 |
| 1.1676        | 5.6679 | 96   | 1.2038          | 0.6650 | 0.5559 |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.2.0
- Datasets 2.16.0
- Tokenizers 0.19.1