--- base_model: HuggingFaceH4/starchat2-15b-sft-v0.1 datasets: - HuggingFaceH4/airoboros-3.2 - HuggingFaceH4/Code-Feedback - HuggingFaceH4/orca-math-word-problems-200k - HuggingFaceH4/SystemChat - HuggingFaceH4/capybara language: - en library_name: transformers license: bigcode-openrail-m quantized_by: mradermacher tags: - alignment-handbook - generated_from_trainer --- ## About static quants of https://huggingface.co/HuggingFaceH4/starchat2-15b-sft-v0.1 weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/starchat2-15b-sft-v0.1-GGUF/resolve/main/starchat2-15b-sft-v0.1.Q2_K.gguf) | Q2_K | 6.3 | | | [GGUF](https://huggingface.co/mradermacher/starchat2-15b-sft-v0.1-GGUF/resolve/main/starchat2-15b-sft-v0.1.Q3_K_S.gguf) | Q3_K_S | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/starchat2-15b-sft-v0.1-GGUF/resolve/main/starchat2-15b-sft-v0.1.Q3_K_M.gguf) | Q3_K_M | 8.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/starchat2-15b-sft-v0.1-GGUF/resolve/main/starchat2-15b-sft-v0.1.IQ4_XS.gguf) | IQ4_XS | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/starchat2-15b-sft-v0.1-GGUF/resolve/main/starchat2-15b-sft-v0.1.Q3_K_L.gguf) | Q3_K_L | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/starchat2-15b-sft-v0.1-GGUF/resolve/main/starchat2-15b-sft-v0.1.Q4_K_S.gguf) | Q4_K_S | 9.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/starchat2-15b-sft-v0.1-GGUF/resolve/main/starchat2-15b-sft-v0.1.Q4_K_M.gguf) | Q4_K_M | 10.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/starchat2-15b-sft-v0.1-GGUF/resolve/main/starchat2-15b-sft-v0.1.Q5_K_S.gguf) | Q5_K_S | 11.1 | | | [GGUF](https://huggingface.co/mradermacher/starchat2-15b-sft-v0.1-GGUF/resolve/main/starchat2-15b-sft-v0.1.Q5_K_M.gguf) | Q5_K_M | 11.5 | | | [GGUF](https://huggingface.co/mradermacher/starchat2-15b-sft-v0.1-GGUF/resolve/main/starchat2-15b-sft-v0.1.Q6_K.gguf) | Q6_K | 13.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/starchat2-15b-sft-v0.1-GGUF/resolve/main/starchat2-15b-sft-v0.1.Q8_0.gguf) | Q8_0 | 17.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.