File size: 46,053 Bytes
7e35bef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0fcc7a
7e35bef
 
 
 
 
 
 
 
 
 
b0fcc7a
7e35bef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0fcc7a
7e35bef
b0fcc7a
7e35bef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0fcc7a
7e35bef
b0fcc7a
7e35bef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:1K<n<10K
- loss:MatryoshkaLoss
- loss:CoSENTLoss
base_model: intfloat/multilingual-e5-large
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: El hombre captura una pelota
  sentences:
  - Un hombre lanza una pelota en el aire.
  - Un hombre está acompañando a una mujer en el camino.
  - Dos mujeres están cantando una hermosa canción.
- source_sentence: La mujer está cortando papas.
  sentences:
  - Una mujer está cortando patatas.
  - Los patos blancos se encuentran parados en el suelo.
  - Hay una banda tocando en el escenario principal.
- source_sentence: Un hombre está buscando algo.
  sentences:
  - En un mercado de granjeros, se encuentra un hombre.
  - Romney filmó en una reunión privada de financiadores
  - Dos perros de color negro están jugando en la hierba.
- source_sentence: Un hombre saltando la cuerda.
  sentences:
  - Un hombre está saltando la cuerda.
  - La capital de Siria fue golpeada por dos explosiones
  - Los gatitos están comiendo de los platos.
- source_sentence: El avión está tocando tierra.
  sentences:
  - El avión animado se encuentra en proceso de aterrizaje.
  - Un pequeño niño montado en un columpio en el parque.
  - Una persona de sexo femenino está cortando una cebolla.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-large
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 768
      type: sts-dev-768
    metrics:
    - type: pearson_cosine
      value: 0.8382359637067547
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8429605562993187
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8336600898033378
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8448900621318144
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8328580183902631
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8441561677427524
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8287262441829462
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8322746204974042
      name: Spearman Dot
    - type: pearson_max
      value: 0.8382359637067547
      name: Pearson Max
    - type: spearman_max
      value: 0.8448900621318144
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 512
      type: sts-dev-512
    metrics:
    - type: pearson_cosine
      value: 0.8334610747047482
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8405630189692351
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8316848819512679
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8426142019940397
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8305903222472721
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8415256700272777
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8172993617433827
      name: Pearson Dot
    - type: spearman_dot
      value: 0.823043401157181
      name: Spearman Dot
    - type: pearson_max
      value: 0.8334610747047482
      name: Pearson Max
    - type: spearman_max
      value: 0.8426142019940397
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 256
      type: sts-dev-256
    metrics:
    - type: pearson_cosine
      value: 0.8240056098321313
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8355774999921849
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8261458415991961
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8355100986320139
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.825647934422587
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8362336344962497
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7924886689283153
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7992788592975302
      name: Spearman Dot
    - type: pearson_max
      value: 0.8261458415991961
      name: Pearson Max
    - type: spearman_max
      value: 0.8362336344962497
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 128
      type: sts-dev-128
    metrics:
    - type: pearson_cosine
      value: 0.8098656853945027
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8304511476467773
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8208946291392102
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8308359029901535
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8195023110971954
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8302481276550623
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7412744037070784
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7489986968697009
      name: Spearman Dot
    - type: pearson_max
      value: 0.8208946291392102
      name: Pearson Max
    - type: spearman_max
      value: 0.8308359029901535
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 64
      type: sts-dev-64
    metrics:
    - type: pearson_cosine
      value: 0.7777717898212414
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8152005256760807
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8007095698339157
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8116493253806699
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8000905317852872
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8110794468804238
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6540905690432955
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6589924104221199
      name: Spearman Dot
    - type: pearson_max
      value: 0.8007095698339157
      name: Pearson Max
    - type: spearman_max
      value: 0.8152005256760807
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 32
      type: sts-dev-32
    metrics:
    - type: pearson_cosine
      value: 0.7276908730898617
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7805691037554072
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7659952363354546
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7751944660837697
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7674462214503804
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7773298298599879
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.5395044219284906
      name: Pearson Dot
    - type: spearman_dot
      value: 0.5341543426421572
      name: Spearman Dot
    - type: pearson_max
      value: 0.7674462214503804
      name: Pearson Max
    - type: spearman_max
      value: 0.7805691037554072
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 16
      type: sts-dev-16
    metrics:
    - type: pearson_cosine
      value: 0.6737235484120327
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7425360948217027
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7187007732867645
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7279621825071231
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7234911258158329
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7374355146279606
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.44701957007430754
      name: Pearson Dot
    - type: spearman_dot
      value: 0.44243975098384164
      name: Spearman Dot
    - type: pearson_max
      value: 0.7234911258158329
      name: Pearson Max
    - type: spearman_max
      value: 0.7425360948217027
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 768
      type: sts-test-768
    metrics:
    - type: pearson_cosine
      value: 0.8637130740455785
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8774757245850818
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8739327947840198
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8771247494149252
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8742964420051067
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8774039769000851
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8587248460103846
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8692624735733635
      name: Spearman Dot
    - type: pearson_max
      value: 0.8742964420051067
      name: Pearson Max
    - type: spearman_max
      value: 0.8774757245850818
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 512
      type: sts-test-512
    metrics:
    - type: pearson_cosine
      value: 0.8608902316971913
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8761454408181157
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8723366100239835
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8755119028724399
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8727143818945785
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8758699632438892
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8498181878456328
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8568165420931783
      name: Spearman Dot
    - type: pearson_max
      value: 0.8727143818945785
      name: Pearson Max
    - type: spearman_max
      value: 0.8761454408181157
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 256
      type: sts-test-256
    metrics:
    - type: pearson_cosine
      value: 0.8546354043013908
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.871536658256446
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8697716394077537
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8737030599161743
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.86989853825415
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8736845554686979
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8131428680674924
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8076436370339797
      name: Spearman Dot
    - type: pearson_max
      value: 0.86989853825415
      name: Pearson Max
    - type: spearman_max
      value: 0.8737030599161743
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 128
      type: sts-test-128
    metrics:
    - type: pearson_cosine
      value: 0.8387977115140051
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8645489592292456
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8611375341227384
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8667215229295422
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.862154474303328
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8680162798983022
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7492475609746636
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7363955675375832
      name: Spearman Dot
    - type: pearson_max
      value: 0.862154474303328
      name: Pearson Max
    - type: spearman_max
      value: 0.8680162798983022
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 64
      type: sts-test-64
    metrics:
    - type: pearson_cosine
      value: 0.8168102869303625
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8585329796388539
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8518107264951738
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8606717941407515
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8533959511853835
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8623753165991692
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6646337116783656
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6473141838302237
      name: Spearman Dot
    - type: pearson_max
      value: 0.8533959511853835
      name: Pearson Max
    - type: spearman_max
      value: 0.8623753165991692
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 32
      type: sts-test-32
    metrics:
    - type: pearson_cosine
      value: 0.7813945227753345
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8424823964509079
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8315336527432531
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8431756901550471
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8345328653107531
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8466076672836096
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.5520860449837447
      name: Pearson Dot
    - type: spearman_dot
      value: 0.5319238671245338
      name: Spearman Dot
    - type: pearson_max
      value: 0.8345328653107531
      name: Pearson Max
    - type: spearman_max
      value: 0.8466076672836096
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 16
      type: sts-test-16
    metrics:
    - type: pearson_cosine
      value: 0.7198004009567176
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8072120165730962
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7805727606105963
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7997833060148871
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7879106231813758
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8090073332632988
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.44957276876149327
      name: Pearson Dot
    - type: spearman_dot
      value: 0.4411623904572447
      name: Spearman Dot
    - type: pearson_max
      value: 0.7879106231813758
      name: Pearson Max
    - type: spearman_max
      value: 0.8090073332632988
      name: Spearman Max
---

# SentenceTransformer based on intfloat/multilingual-e5-large

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) on an augmented version of `stsb_multi_es` dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) <!-- at revision ab10c1a7f42e74530fe7ae5be82e6d4f11a719eb -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
  - stsb_multi_es_aug
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("mrm8488/multilingual-e5-large-ft-sts-spanish-matryoshka-768-16-5e")
# Run inference
sentences = [
    'El avión está tocando tierra.',
    'El avión animado se encuentra en proceso de aterrizaje.',
    'Un pequeño niño montado en un columpio en el parque.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-dev-768`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| pearson_cosine      | 0.8382    |
| **spearman_cosine** | **0.843** |
| pearson_manhattan   | 0.8337    |
| spearman_manhattan  | 0.8449    |
| pearson_euclidean   | 0.8329    |
| spearman_euclidean  | 0.8442    |
| pearson_dot         | 0.8287    |
| spearman_dot        | 0.8323    |
| pearson_max         | 0.8382    |
| spearman_max        | 0.8449    |

#### Semantic Similarity
* Dataset: `sts-dev-512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8335     |
| **spearman_cosine** | **0.8406** |
| pearson_manhattan   | 0.8317     |
| spearman_manhattan  | 0.8426     |
| pearson_euclidean   | 0.8306     |
| spearman_euclidean  | 0.8415     |
| pearson_dot         | 0.8173     |
| spearman_dot        | 0.823      |
| pearson_max         | 0.8335     |
| spearman_max        | 0.8426     |

#### Semantic Similarity
* Dataset: `sts-dev-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.824      |
| **spearman_cosine** | **0.8356** |
| pearson_manhattan   | 0.8261     |
| spearman_manhattan  | 0.8355     |
| pearson_euclidean   | 0.8256     |
| spearman_euclidean  | 0.8362     |
| pearson_dot         | 0.7925     |
| spearman_dot        | 0.7993     |
| pearson_max         | 0.8261     |
| spearman_max        | 0.8362     |

#### Semantic Similarity
* Dataset: `sts-dev-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8099     |
| **spearman_cosine** | **0.8305** |
| pearson_manhattan   | 0.8209     |
| spearman_manhattan  | 0.8308     |
| pearson_euclidean   | 0.8195     |
| spearman_euclidean  | 0.8302     |
| pearson_dot         | 0.7413     |
| spearman_dot        | 0.749      |
| pearson_max         | 0.8209     |
| spearman_max        | 0.8308     |

#### Semantic Similarity
* Dataset: `sts-dev-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.7778     |
| **spearman_cosine** | **0.8152** |
| pearson_manhattan   | 0.8007     |
| spearman_manhattan  | 0.8116     |
| pearson_euclidean   | 0.8001     |
| spearman_euclidean  | 0.8111     |
| pearson_dot         | 0.6541     |
| spearman_dot        | 0.659      |
| pearson_max         | 0.8007     |
| spearman_max        | 0.8152     |

#### Semantic Similarity
* Dataset: `sts-dev-32`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.7277     |
| **spearman_cosine** | **0.7806** |
| pearson_manhattan   | 0.766      |
| spearman_manhattan  | 0.7752     |
| pearson_euclidean   | 0.7674     |
| spearman_euclidean  | 0.7773     |
| pearson_dot         | 0.5395     |
| spearman_dot        | 0.5342     |
| pearson_max         | 0.7674     |
| spearman_max        | 0.7806     |

#### Semantic Similarity
* Dataset: `sts-dev-16`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.6737     |
| **spearman_cosine** | **0.7425** |
| pearson_manhattan   | 0.7187     |
| spearman_manhattan  | 0.728      |
| pearson_euclidean   | 0.7235     |
| spearman_euclidean  | 0.7374     |
| pearson_dot         | 0.447      |
| spearman_dot        | 0.4424     |
| pearson_max         | 0.7235     |
| spearman_max        | 0.7425     |

#### Semantic Similarity
* Dataset: `sts-test-768`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8637     |
| **spearman_cosine** | **0.8775** |
| pearson_manhattan   | 0.8739     |
| spearman_manhattan  | 0.8771     |
| pearson_euclidean   | 0.8743     |
| spearman_euclidean  | 0.8774     |
| pearson_dot         | 0.8587     |
| spearman_dot        | 0.8693     |
| pearson_max         | 0.8743     |
| spearman_max        | 0.8775     |

#### Semantic Similarity
* Dataset: `sts-test-512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8609     |
| **spearman_cosine** | **0.8761** |
| pearson_manhattan   | 0.8723     |
| spearman_manhattan  | 0.8755     |
| pearson_euclidean   | 0.8727     |
| spearman_euclidean  | 0.8759     |
| pearson_dot         | 0.8498     |
| spearman_dot        | 0.8568     |
| pearson_max         | 0.8727     |
| spearman_max        | 0.8761     |

#### Semantic Similarity
* Dataset: `sts-test-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8546     |
| **spearman_cosine** | **0.8715** |
| pearson_manhattan   | 0.8698     |
| spearman_manhattan  | 0.8737     |
| pearson_euclidean   | 0.8699     |
| spearman_euclidean  | 0.8737     |
| pearson_dot         | 0.8131     |
| spearman_dot        | 0.8076     |
| pearson_max         | 0.8699     |
| spearman_max        | 0.8737     |

#### Semantic Similarity
* Dataset: `sts-test-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8388     |
| **spearman_cosine** | **0.8645** |
| pearson_manhattan   | 0.8611     |
| spearman_manhattan  | 0.8667     |
| pearson_euclidean   | 0.8622     |
| spearman_euclidean  | 0.868      |
| pearson_dot         | 0.7492     |
| spearman_dot        | 0.7364     |
| pearson_max         | 0.8622     |
| spearman_max        | 0.868      |

#### Semantic Similarity
* Dataset: `sts-test-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8168     |
| **spearman_cosine** | **0.8585** |
| pearson_manhattan   | 0.8518     |
| spearman_manhattan  | 0.8607     |
| pearson_euclidean   | 0.8534     |
| spearman_euclidean  | 0.8624     |
| pearson_dot         | 0.6646     |
| spearman_dot        | 0.6473     |
| pearson_max         | 0.8534     |
| spearman_max        | 0.8624     |

#### Semantic Similarity
* Dataset: `sts-test-32`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.7814     |
| **spearman_cosine** | **0.8425** |
| pearson_manhattan   | 0.8315     |
| spearman_manhattan  | 0.8432     |
| pearson_euclidean   | 0.8345     |
| spearman_euclidean  | 0.8466     |
| pearson_dot         | 0.5521     |
| spearman_dot        | 0.5319     |
| pearson_max         | 0.8345     |
| spearman_max        | 0.8466     |

#### Semantic Similarity
* Dataset: `sts-test-16`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.7198     |
| **spearman_cosine** | **0.8072** |
| pearson_manhattan   | 0.7806     |
| spearman_manhattan  | 0.7998     |
| pearson_euclidean   | 0.7879     |
| spearman_euclidean  | 0.809      |
| pearson_dot         | 0.4496     |
| spearman_dot        | 0.4412     |
| pearson_max         | 0.7879     |
| spearman_max        | 0.809      |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### stsb_multi_es_aug

* Dataset: stsb_multi_es_aug
* Size: 2,697 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | score                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                          |
  | details | <ul><li>min: 8 tokens</li><li>mean: 22.25 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 22.01 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.67</li><li>max: 5.0</li></ul> |
* Samples:
  | sentence1                                                                                             | sentence2                                                                                                    | score                          |
  |:------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:-------------------------------|
  | <code>El pájaro de tamaño reducido se posó con delicadeza en una rama cubierta de escarcha.</code>    | <code>Un ave de color amarillo descansaba tranquilamente en una rama.</code>                                 | <code>3.200000047683716</code> |
  | <code>Una chica está tocando la flauta en un parque.</code>                                           | <code>Un grupo de músicos está tocando en un escenario al aire libre.</code>                                 | <code>1.286</code>             |
  | <code>La aclamada escritora británica, Doris Lessing, galardonada con el premio Nobel, fallece</code> | <code>La destacada autora británica, Doris Lessing, reconocida con el prestigioso Premio Nobel, muere</code> | <code>4.199999809265137</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "CoSENTLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64,
          32,
          16
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Evaluation Dataset

#### stsb_multi_es_aug

* Dataset: stsb_multi_es_aug
* Size: 697 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | score                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                         |
  | details | <ul><li>min: 8 tokens</li><li>mean: 22.76 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 22.26 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.3</li><li>max: 5.0</li></ul> |
* Samples:
  | sentence1                                                                                                                                                           | sentence2                                                                                                                                                     | score                          |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------|
  | <code>Un incendio ocurrido en un hospital psiquiátrico ruso resultó en la trágica muerte de 38 personas.</code>                                                     | <code>Se teme que el incendio en un hospital psiquiátrico ruso cause la pérdida de la vida de 38 individuos.</code>                                           | <code>4.199999809265137</code> |
  | <code>"Street dijo que el otro individuo a veces se siente avergonzado de su fiesta, lo cual provoca risas en la multitud"</code>                                   | <code>"A veces, el otro tipo se encuentra avergonzado de su fiesta y no se le puede culpar."</code>                                                           | <code>3.5</code>               |
  | <code>El veterano diplomático de Malasia tuvo un encuentro con Suu Kyi el miércoles en la casa del lago en Yangon donde permanece bajo arresto domiciliario.</code> | <code>Razali Ismail tuvo una reunión de 90 minutos con Suu Kyi, quien ganó el Premio Nobel de la Paz en 1991, en su casa del lago donde está recluida.</code> | <code>3.691999912261963</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "CoSENTLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64,
          32,
          16
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | loss    | sts-dev-128_spearman_cosine | sts-dev-16_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-32_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-16_spearman_cosine | sts-test-256_spearman_cosine | sts-test-32_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
|:------:|:----:|:-------------:|:-------:|:---------------------------:|:--------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
| 0.5917 | 100  | 30.7503       | 30.6172 | 0.8117                      | 0.7110                     | 0.8179                      | 0.7457                     | 0.8244                      | 0.7884                     | 0.8252                      | -                            | -                           | -                            | -                           | -                            | -                           | -                            |
| 1.1834 | 200  | 30.4696       | 32.6422 | 0.7952                      | 0.7198                     | 0.8076                      | 0.7491                     | 0.8125                      | 0.7813                     | 0.8142                      | -                            | -                           | -                            | -                           | -                            | -                           | -                            |
| 1.7751 | 300  | 29.9233       | 31.5469 | 0.8152                      | 0.7435                     | 0.8250                      | 0.7737                     | 0.8302                      | 0.8006                     | 0.8305                      | -                            | -                           | -                            | -                           | -                            | -                           | -                            |
| 2.3669 | 400  | 29.0716       | 31.8088 | 0.8183                      | 0.7405                     | 0.8248                      | 0.7758                     | 0.8299                      | 0.8057                     | 0.8324                      | -                            | -                           | -                            | -                           | -                            | -                           | -                            |
| 2.9586 | 500  | 28.7971       | 32.6032 | 0.8176                      | 0.7430                     | 0.8241                      | 0.7777                     | 0.8289                      | 0.8025                     | 0.8316                      | -                            | -                           | -                            | -                           | -                            | -                           | -                            |
| 3.5503 | 600  | 27.4766       | 34.7911 | 0.8241                      | 0.7400                     | 0.8314                      | 0.7730                     | 0.8369                      | 0.8061                     | 0.8394                      | -                            | -                           | -                            | -                           | -                            | -                           | -                            |
| 4.1420 | 700  | 27.0639       | 35.7418 | 0.8294                      | 0.7466                     | 0.8354                      | 0.7784                     | 0.8389                      | 0.8107                     | 0.8409                      | -                            | -                           | -                            | -                           | -                            | -                           | -                            |
| 4.7337 | 800  | 26.5119       | 36.2014 | 0.8305                      | 0.7425                     | 0.8356                      | 0.7806                     | 0.8406                      | 0.8152                     | 0.8430                      | -                            | -                           | -                            | -                           | -                            | -                           | -                            |
| 5.0    | 845  | -             | -       | -                           | -                          | -                           | -                          | -                           | -                          | -                           | 0.8645                       | 0.8072                      | 0.8715                       | 0.8425                      | 0.8761                       | 0.8585                      | 0.8775                       |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->