--- library_name: transformers license: apache-2.0 base_model: PrimeIntellect/INTELLECT-1-Instruct tags: - axolotl - generated_from_trainer datasets: - neginashz/rationale-llama-chat-dataset model-index: - name: star-sft-intellect-instruct-2 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: PrimeIntellect/INTELLECT-1-Instruct trust_remote_code: true model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer gpu_memory_limit: load_in_8bit: load_in_4bit: strict: false chat_template: llama3 datasets: - path: neginashz/rationale-llama-chat-dataset type: chat_template field_messages: messages message_field_role: role message_field_content: content dataset_prepared_path: val_set_size: 0.1 output_dir: ./star-sft-intellect-2 sequence_len: 8192 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true wandb_project: star-sft-intellect-instruct-2 wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 2 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.00002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: eval_steps: save_steps: evals_per_epoch: 16 saves_per_epoch: 1 debug: deepspeed: deepspeed_configs/zero2.json weight_decay: fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> pad_token: <|finetune_right_pad_id|> hub_model_id: neginashz/star-sft-intellect-instruct-2 hub_strategy: early_stopping_patience: resume_from_checkpoint: auto_resume_from_checkpoints: true ```

# star-sft-intellect-instruct-2 This model is a fine-tuned version of [PrimeIntellect/INTELLECT-1-Instruct](https://huggingface.co/PrimeIntellect/INTELLECT-1-Instruct) on the neginashz/rationale-llama-chat-dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3719 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 6 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5033 | 0.0686 | 7 | 0.4057 | | 0.4303 | 0.1373 | 14 | 0.3986 | | 0.4496 | 0.2059 | 21 | 0.3977 | | 0.4223 | 0.2745 | 28 | 0.3973 | | 0.4083 | 0.3431 | 35 | 0.3940 | | 0.4191 | 0.4118 | 42 | 0.3893 | | 0.412 | 0.4804 | 49 | 0.3859 | | 0.3912 | 0.5490 | 56 | 0.3812 | | 0.3995 | 0.6176 | 63 | 0.3749 | | 0.4236 | 0.6863 | 70 | 0.3703 | | 0.3833 | 0.7549 | 77 | 0.3663 | | 0.3605 | 0.8235 | 84 | 0.3614 | | 0.3952 | 0.8922 | 91 | 0.3576 | | 0.3744 | 0.9608 | 98 | 0.3540 | | 0.199 | 1.0196 | 105 | 0.3536 | | 0.1762 | 1.0882 | 112 | 0.4128 | | 0.1704 | 1.1569 | 119 | 0.3808 | | 0.1603 | 1.2255 | 126 | 0.3781 | | 0.1727 | 1.2941 | 133 | 0.3874 | | 0.1624 | 1.3627 | 140 | 0.3841 | | 0.1546 | 1.4314 | 147 | 0.3793 | | 0.1602 | 1.5 | 154 | 0.3776 | | 0.1501 | 1.5686 | 161 | 0.3745 | | 0.146 | 1.6373 | 168 | 0.3734 | | 0.1512 | 1.7059 | 175 | 0.3733 | | 0.146 | 1.7745 | 182 | 0.3725 | | 0.1479 | 1.8431 | 189 | 0.3721 | | 0.1395 | 1.9118 | 196 | 0.3720 | | 0.1472 | 1.9804 | 203 | 0.3719 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0