File size: 3,986 Bytes
75b06fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
---
library_name: transformers
license: apache-2.0
base_model: PrimeIntellect/INTELLECT-1-Instruct
tags:
- axolotl
- generated_from_trainer
datasets:
- neginashz/rationale-llama-chat-dataset
model-index:
- name: star-sft-intellect-instruct-3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.6.0`
```yaml
base_model: PrimeIntellect/INTELLECT-1-Instruct
trust_remote_code: true
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
gpu_memory_limit:
load_in_8bit:
load_in_4bit:
strict: false
chat_template: llama3
datasets:
- path: neginashz/rationale-llama-chat-dataset
type: chat_template
field_messages: messages
#message_field_role: role
#message_field_content: content
dataset_prepared_path:
val_set_size: 0.1
output_dir: ./star-sft-intellect-3
sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
wandb_project: star-sft-intellect-instruct-3
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps:
eval_steps:
save_steps:
evals_per_epoch: 16
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero2.json
weight_decay:
fsdp:
fsdp_config:
special_tokens:
hub_model_id: neginashz/star-sft-intellect-instruct-3
hub_strategy:
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints: true
```
</details><br>
# star-sft-intellect-instruct-3
This model is a fine-tuned version of [PrimeIntellect/INTELLECT-1-Instruct](https://huggingface.co/PrimeIntellect/INTELLECT-1-Instruct) on the neginashz/rationale-llama-chat-dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3380
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 3
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.5519 | 0.0686 | 7 | 0.4405 |
| 0.4453 | 0.1373 | 14 | 0.4080 |
| 0.4511 | 0.2059 | 21 | 0.4004 |
| 0.4243 | 0.2745 | 28 | 0.3979 |
| 0.405 | 0.3431 | 35 | 0.3893 |
| 0.4134 | 0.4118 | 42 | 0.3832 |
| 0.4028 | 0.4804 | 49 | 0.3753 |
| 0.3801 | 0.5490 | 56 | 0.3682 |
| 0.3878 | 0.6176 | 63 | 0.3593 |
| 0.4085 | 0.6863 | 70 | 0.3523 |
| 0.3649 | 0.7549 | 77 | 0.3460 |
| 0.3378 | 0.8235 | 84 | 0.3416 |
| 0.377 | 0.8922 | 91 | 0.3390 |
| 0.3542 | 0.9608 | 98 | 0.3380 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0
|