File size: 4,300 Bytes
964fb0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
---
library_name: transformers
license: apache-2.0
base_model: PrimeIntellect/INTELLECT-1-Instruct
tags:
- axolotl
- generated_from_trainer
datasets:
- neginashz/rationale-llama-chat-dataset
model-index:
- name: star-sft-intellect-instruct-6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.6.0`
```yaml
base_model: PrimeIntellect/INTELLECT-1-Instruct
trust_remote_code: true
model_type: AutoModelForCausalLM
tokenizer_config: meta-llama/Llama-3.1-8B-Instruct
#model_type: LlamaForCausalLM
#tokenizer_type: llama3
gpu_memory_limit:
deepspeed: deepspeed_configs/zero2.json
load_in_8bit:
load_in_4bit:
strict: false
chat_template: llama3
datasets:
- path: neginashz/rationale-llama-chat-dataset
type: chat_template
chat_template: llama3
field_messages: messages
message_field_role: role
message_field_content: content
roles:
system:
- system
user:
- user
assistant:
- assistant
#roles_to_train: ["assistant"] # default
# Optional[str]. Which EOS tokens to train on in the conversation. Possible values are:
# - all: train on all EOS tokens
# - turn (default): train on the EOS token at the end of each trainable turn
# - last: train on the last EOS token in the conversation
#train_on_eos: turn
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./star-sft-intellect-6
sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
wandb_project: star-sft-intellect-instruct-6
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_checkpointing: true
#gradient_clipping: true
gradient_accumulation_steps: 1
#batch_size: 1
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps:
eval_steps:
save_steps:
evals_per_epoch: 8
saves_per_epoch: 2
eval_max_new_tokens: 128
debug:
weight_decay:
fsdp:
fsdp_config:
hub_model_id: neginashz/star-sft-intellect-instruct-6
hub_strategy:
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints: false
special_tokens:
pad_token: <|finetune_right_pad_id|>
eos_token": <|eot_id|>
```
</details><br>
# star-sft-intellect-instruct-6
This model is a fine-tuned version of [PrimeIntellect/INTELLECT-1-Instruct](https://huggingface.co/PrimeIntellect/INTELLECT-1-Instruct) on the neginashz/rationale-llama-chat-dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3380
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 3
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.4428 | 0.1261 | 14 | 0.4024 |
| 0.433 | 0.2523 | 28 | 0.3939 |
| 0.4197 | 0.3784 | 42 | 0.3799 |
| 0.4083 | 0.5045 | 56 | 0.3679 |
| 0.357 | 0.6306 | 70 | 0.3534 |
| 0.3623 | 0.7568 | 84 | 0.3435 |
| 0.3645 | 0.8829 | 98 | 0.3380 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0
|