--- library_name: transformers license: apache-2.0 base_model: PrimeIntellect/INTELLECT-1-Instruct tags: - axolotl - generated_from_trainer datasets: - neginashz/rationale-llama-chat-dataset model-index: - name: star-sft-intellect-instruct-6 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: PrimeIntellect/INTELLECT-1-Instruct trust_remote_code: true model_type: AutoModelForCausalLM tokenizer_config: meta-llama/Llama-3.1-8B-Instruct #model_type: LlamaForCausalLM #tokenizer_type: llama3 gpu_memory_limit: deepspeed: deepspeed_configs/zero2.json load_in_8bit: load_in_4bit: strict: false chat_template: llama3 datasets: - path: neginashz/rationale-llama-chat-dataset type: chat_template chat_template: llama3 field_messages: messages message_field_role: role message_field_content: content roles: system: - system user: - user assistant: - assistant #roles_to_train: ["assistant"] # default # Optional[str]. Which EOS tokens to train on in the conversation. Possible values are: # - all: train on all EOS tokens # - turn (default): train on the EOS token at the end of each trainable turn # - last: train on the last EOS token in the conversation #train_on_eos: turn dataset_prepared_path: val_set_size: 0.05 output_dir: ./star-sft-intellect-6 sequence_len: 8192 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true wandb_project: star-sft-intellect-instruct-6 wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_checkpointing: true #gradient_clipping: true gradient_accumulation_steps: 1 #batch_size: 1 micro_batch_size: 1 num_epochs: 1 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.00002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: eval_steps: save_steps: evals_per_epoch: 8 saves_per_epoch: 2 eval_max_new_tokens: 128 debug: weight_decay: fsdp: fsdp_config: hub_model_id: neginashz/star-sft-intellect-instruct-6 hub_strategy: early_stopping_patience: resume_from_checkpoint: auto_resume_from_checkpoints: false special_tokens: pad_token: <|finetune_right_pad_id|> eos_token": <|eot_id|> ```

# star-sft-intellect-instruct-6 This model is a fine-tuned version of [PrimeIntellect/INTELLECT-1-Instruct](https://huggingface.co/PrimeIntellect/INTELLECT-1-Instruct) on the neginashz/rationale-llama-chat-dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3380 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 3 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4428 | 0.1261 | 14 | 0.4024 | | 0.433 | 0.2523 | 28 | 0.3939 | | 0.4197 | 0.3784 | 42 | 0.3799 | | 0.4083 | 0.5045 | 56 | 0.3679 | | 0.357 | 0.6306 | 70 | 0.3534 | | 0.3623 | 0.7568 | 84 | 0.3435 | | 0.3645 | 0.8829 | 98 | 0.3380 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0