--- tags: - fp8 - vllm language: - en - de - fr - it - pt - hi - es - th pipeline_tag: text-generation license: llama3.2 base_model: meta-llama/Llama-3.2-3B-Instruct --- # Llama-3.2-3B-Instruct-FP8-dynamic ## Model Overview - **Model Architecture:** Meta-Llama-3.2 - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** FP8 - **Activation quantization:** FP8 - **Intended Use Cases:** Intended for commercial and research use in multiple languages. Similarly to [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct), this models is intended for assistant-like chat. - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. - **Release Date:** 9/25/2024 - **Version:** 1.0 - **License(s):** [llama3.2](https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/LICENSE) - **Model Developers:** Neural Magic Quantized version of [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct). It achieves an average score of 50.88 on a subset of task from the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 51.70. ### Model Optimizations This model was obtained by quantizing the weights and activations of [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) to FP8 data type, ready for inference with vLLM built from source. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the FP8 representations of the quantized weights and activations. Activations are also quantized on a per-token dynamic basis. [LLM Compressor](https://github.com/vllm-project/llm-compressor) is used for quantization. ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "neuralmagic/Llama-3.2-3B-Instruct-FP8-dynamic" sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256) tokenizer = AutoTokenizer.from_pretrained(model_id) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompts = tokenizer.apply_chat_template(messages, tokenize=False) llm = LLM(model=model_id) outputs = llm.generate(prompts, sampling_params) generated_text = outputs[0].outputs[0].text print(generated_text) ``` vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created by applying [LLM Compressor](https://github.com/vllm-project/llm-compressor/blob/sa/big_model_support/examples/big_model_offloading/big_model_w8a8_calibrate.py), as presented in the code snipet below. ```python import torch from transformers import AutoTokenizer from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot from llmcompressor.transformers.compression.helpers import ( # noqa calculate_offload_device_map, custom_offload_device_map, ) recipe = """ quant_stage: quant_modifiers: QuantizationModifier: ignore: ["lm_head"] config_groups: group_0: weights: num_bits: 8 type: float strategy: channel dynamic: false symmetric: true input_activations: num_bits: 8 type: float strategy: token dynamic: true symmetric: true targets: ["Linear"] """ model_stub = "meta-llama/Llama-3.2-3B-Instruct" model_name = model_stub.split("/")[-1] device_map = calculate_offload_device_map( model_stub, reserve_for_hessians=False, num_gpus=1, torch_dtype="auto" ) model = SparseAutoModelForCausalLM.from_pretrained( model_stub, torch_dtype="auto", device_map=device_map ) output_dir = f"./{model_name}-FP8-dynamic" oneshot( model=model, recipe=recipe, output_dir=output_dir, save_compressed=True, tokenizer=AutoTokenizer.from_pretrained(model_stub), ) ``` ## Evaluation The model was evaluated on MMLU, ARC-Challenge, GSM-8K, and Winogrande. Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine. This version of the lm-evaluation-harness includes versions of ARC-Challenge, GSM-8K, MMLU, and MMLU-cot that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals). ### Accuracy #### Open LLM Leaderboard evaluation scores
Benchmark | Llama-3.2-3B-Instruct | Llama-3.2-3B-Instruct-FP8-dynamic (this model) | Recovery |
MMLU (5-shot) | 62.98 | 62.95 | 100.0% |
MMLU-cot (0-shot) | 65.40 | 65.23 | 99.7% |
ARC Challenge (0-shot) | 77.13 | 76.71 | 99.4% |
GSM-8K-cot (8-shot, strict-match) | 77.94 | 76.72 | 98.4% |
Winogrande (5-shot) | 71.11 | 71.11 | 100.0% |
Hellaswag (10-shot) | 73.62 | 73.54 | 99.9% |
TruthfulQA (0-shot, mc2) | 51.47 | 51.06 | 99.2% |
Average | 68.52 | 68.19 | 99.5% |