Papers
arxiv:2402.05044

SALAD-Bench: A Hierarchical and Comprehensive Safety Benchmark for Large Language Models

Published on Feb 7, 2024
Authors:
,
,
,
,
,
,

Abstract

In the rapidly evolving landscape of Large Language Models (LLMs), ensuring robust safety measures is paramount. To meet this crucial need, we propose SALAD-Bench, a safety benchmark specifically designed for evaluating LLMs, attack, and defense methods. Distinguished by its breadth, SALAD-Bench transcends conventional benchmarks through its large scale, rich diversity, intricate taxonomy spanning three levels, and versatile functionalities.SALAD-Bench is crafted with a meticulous array of questions, from standard queries to complex ones enriched with attack, defense modifications and multiple-choice. To effectively manage the inherent complexity, we introduce an innovative evaluators: the LLM-based MD-Judge for QA pairs with a particular focus on attack-enhanced queries, ensuring a seamless, and reliable evaluation. Above components extend SALAD-Bench from standard LLM safety evaluation to both LLM attack and defense methods evaluation, ensuring the joint-purpose utility. Our extensive experiments shed light on the resilience of LLMs against emerging threats and the efficacy of contemporary defense tactics. Data and evaluator are released under https://github.com/OpenSafetyLab/SALAD-BENCH. Warning: this paper includes examples that may be offensive or harmful.

Community

Sign up or log in to comment

Models citing this paper 3

Datasets citing this paper 2

Spaces citing this paper 8

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.