Papers
arxiv:2408.06142

Med42-v2: A Suite of Clinical LLMs

Published on Aug 12, 2024
· Submitted by akhaliq on Aug 13, 2024

Abstract

Med42-v2 introduces a suite of clinical large language models (LLMs) designed to address the limitations of generic models in healthcare settings. These models are built on Llama3 architecture and fine-tuned using specialized clinical data. They underwent multi-stage preference alignment to effectively respond to natural prompts. While generic models are often preference-aligned to avoid answering clinical queries as a precaution, Med42-v2 is specifically trained to overcome this limitation, enabling its use in clinical settings. Med42-v2 models demonstrate superior performance compared to the original Llama3 models in both 8B and 70B parameter configurations and GPT-4 across various medical benchmarks. These LLMs are developed to understand clinical queries, perform reasoning tasks, and provide valuable assistance in clinical environments. The models are now publicly available at https://huggingface.co/m42-health{https://huggingface.co/m42-health}.

Community

Paper submitter

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Sign up or log in to comment

Models citing this paper 5

Browse 5 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2408.06142 in a dataset README.md to link it from this page.

Spaces citing this paper 11

Collections including this paper 7